No, 243 is not a prime number, it is a composite number.
I hope I helped you again :-)
Answer:
12.4
Step-by-step explanation:
First you need to find the hypotenuse of the other triangle, because it makes up a necessary side for finding AD. Pythagorean theorem states that
a^2 + b^2 = c^2 where a and b are leg lengths and c is the hypotenuse. For the triangle on the left, you're given 2 legs. So you can substitute those into that formula:
a^2 + b^2 = c^2
(10)^2 + (6)^2 = c^2
100 + 36 = c^2
136 = c^2.
Now take the square root of both sides to isolate c.
11.6619038 = c.
11.6619038 rounds to 11.7 so c = 11.7
Now that you have the second leg length for the triangle on the right, you can find its hypotenuse.
Follow the same process. Substitute your values into the equation and then solve for c:
a^2 + b^2 = c^2
(11.7)^2 + (4)^2 = c^2
136.89 + 16 = c^2
152.89 = c^2
Now find the square root of both sides to isolate c
12.3648696 = c.
12.3648696 rounds to 12.4 so c = 12.4
So the distance of AD is 12.4
Answer:


Step-by-step explanation:
Given


Required
Determine the volume of the solid generated
Using the disk method approach, we have:

Where


So:

Where
So:
Apply the following half angle trigonometry identity;
![\cos^2(x) = \frac{1}{2}[1 + \cos(2x)]](https://tex.z-dn.net/?f=%5Ccos%5E2%28x%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5B1%20%2B%20%5Ccos%282x%29%5D)
So, we have:
![\cos^2(2x) = \frac{1}{2}[1 + \cos(2*2x)]](https://tex.z-dn.net/?f=%5Ccos%5E2%282x%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5B1%20%2B%20%5Ccos%282%2A2x%29%5D)
Open bracket

So, we have:
![V = \pi \int\limits^{\frac{\pi}{4}}_0 {[\frac{1}{2} + \frac{1}{2}\cos(4x)]} \, dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5Cint%5Climits%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D_0%20%7B%5B%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Ccos%284x%29%5D%7D%20%5C%2C%20dx)
Integrate
![V = \pi [\frac{x}{2} + \frac{1}{8}\sin(4x)]\limits^{\frac{\pi}{4}}_0](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5B%5Cfrac%7Bx%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5Csin%284x%29%5D%5Climits%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D_0)
Expand
![V = \pi ([\frac{\frac{\pi}{4}}{2} + \frac{1}{8}\sin(4*\frac{\pi}{4})] - [\frac{0}{2} + \frac{1}{8}\sin(4*0)])](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%28%5B%5Cfrac%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5Csin%284%2A%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5D%20-%20%5B%5Cfrac%7B0%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5Csin%284%2A0%29%5D%29)
So:
or

A function has the property that each element of the domain maps to only one element. For example, if there's ever the case where a relation includes point (1,2) and (1,3) then that relation is not a function. So for each case write down all the points as described. If one point in the domain ever maps to two different points, then it's not a function