Each shows two lines that make up a system of equations. If the graphs of the equations intersect, then there is one solution that is true for both equations. If the graphs of the equations do not intersect (for example, if they are parallel), then there are no solutions that are true for both equations.
Answer:
15u + 141 = 420
Step-by-step explanation:
So basically we are modelling how much the coach is spending. Each player is given a uniform and a basketball
We can use 'u' as the cost of a single uniform
We can use 'b' as the cost of a single basketball
Since there is 15 players we must give a ball and uniform to each so
15u + 15b = 420
The problem gives us the cost of each basketball: 9.40
so now 15u + 15(9.4) = 420
15u + 141 = 420
Answer: option c
Step-by-step explanation:
Find the x-intercept and y-intercept of each line.
To find the x-intercept, substitute
into the equation and solve for "x".
To find the y-intercept, substitute
into the equation and solve for "y".
- For the first equation:
x-intercept

y-intercept

Graph a line that passes through the points (7.25, 0) and (0, 9.66)
- For the second equation:
x-intercept

y-intercept

Graph a line that passes through the points (0.5, 0) and (0, -0.33)
Observe the graph attached. You can see that point of intersection of the lines is (5,3); then this is the solution of the system. Therefore:

Steps to solve:
15 + 2a = 35
~Subtract 15 to both sides
2a = 20
~Divide 2 to both sides
a = 10
Best of Luck!