Answer:
(i) ∠ABH = 14.5°
(ii) The length of AH = 4.6 m
Step-by-step explanation:
To solve the problem, we will follow the steps below;
(i)Finding ∠ABH
first lets find <HBC
<BHC + <HBC + <BCH = 180° (Sum of interior angle in a polygon)
46° + <HBC + 90 = 180°
<HBC+ 136° = 180°
subtract 136 from both-side of the equation
<HBC+ 136° - 136° = 180° -136°
<HBC = 44°
lets find <ABC
To do that, we need to first find <BAC
Using the sine rule
= 
A = ?
a=6.9
C=90
c=13.2
= 
sin A = 6.9 sin 90 /13.2
sinA = 0.522727
A = sin⁻¹ ( 0.522727)
A ≈ 31.5 °
<BAC = 31.5°
<BAC + <ABC + <BCA = 180° (sum of interior angle of a triangle)
31.5° +<ABC + 90° = 180°
<ABC + 121.5° = 180°
subtract 121.5° from both-side of the equation
<ABC + 121.5° - 121.5° = 180° - 121.5°
<ABC = 58.5°
<ABH = <ABC - <HBC
=58.5° - 44°
=14.5°
∠ABH = 14.5°
(ii) Finding the length of AH
To find length AH, we need to first find ∠AHB
<AHB + <BHC = 180° ( angle on a straight line)
<AHB + 46° = 180°
subtract 46° from both-side of the equation
<AHB + 46°- 46° = 180° - 46°
<AHB = 134°
Using sine rule,
= 
AH = 13.2 sin 14.5 / sin 134
AH≈4.6 m
length AH = 4.6 m
-0.65
-3/8
2/4
5/16
I hope this is right, the negatives should go first because you are taking away, then positives
For anyone else who needs the right answer...it’s “parallel to the base”. I just did it and I got it right.
Answer:
ok the second one the answer is 66
Step-by-step explanation:
- we get that <em><u>x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>8</u></em><em><u>0</u></em><em><u>/</u></em><em><u>4</u></em><em><u>8</u></em><em><u>/</u></em><em><u>2</u></em><em><u>=</u></em><em><u>6</u></em><em><u>6</u></em><em><u> </u></em><em><u>hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>helps</u></em><em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>wanted</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>just</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>thx</u></em><em><u> </u></em>