Y=Acos(p)+m, A=amplitude, p=period, m=midline, in this case:
A=1/2, p=360(t/12)=30t, m=(10-9)/2+9=9.5 so
h(t)=(1/2)cos(30t)+9.5
Answer:
x=9.768
y=6.972
Step-by-step explanation:
For this problem we have to use the trig relationships of cos and sin to figure out the lengths. Cos is equal to adjacent/hypotenuse so we can set it as x/r=.814 and since r is equal to 12 we can do 12 times .814 to get x.
We do a similar process for sin but sin is equal to opposite/hypotenuse so we can set up the equation y/r=.581 and we simply multiply both sides by 12 to get 12*.581 to get y.
Also for future reference adjacent and hypotenuse are based on the angle at use, since ∅ is on the bottom left x is the adjacent side and y is the opposite side.
The right answer is -2585
Step-by-step explanation:
let say he sold 5 bagels then he would sell 5 bagels
12-5=7 , b=7
replace in 12-5=7
b=12-s