81 a² - 25
is a difference of two squares and its factors are (9a + 5z³) and (9a - 5z³)
Step-by-step explanation:
The difference of two squares is a binomial of two terms each term is a square and the sign between the two terms is (-), its factorization is the product of two identical binomials with different middle signs
- a² - b² is a difference of two squares
- a² - b² = (a + b)(a - b)
∵ The binomial is 81 a² - 25
∵
= 9
∵
= a
∴ 
∵
= 5
∵
= z³
∴ 
- The two terms have square root
∵ The sign between them is (-)
∴ 81 a² - 25
is a difference of two squares
∵ Its factorization is two identical brackets with different
middle signs
∵ 81 a² = 9a × 9a
∵ 25
= 5z³ × 5z³
- The terms of the two brackets are 9a and 5z³
∴ 81 a² - 25
= (9a + 5z³)(9a - 5z³)
81 a² - 25
is a difference of two squares and its factors are (9a + 5z³) and (9a - 5z³)
Learn more:
You can learn more about the difference of two squares in brainly.com/question/1414397
#LearnwithBrainly
Fractions can be converted to decimals and vice versa.
<em>The decimal equivalent of the fraction of months with 31 days is 0.583</em>
Given:
<em />
<em> --- months in a year</em>
<em />
<em> --- months with 31 days</em>
<em />
The fraction (n) of months with 31 days is:

So, we have:

The decimal equivalent is:

Hence, (c) is correct.
Read more about fractions and decimals at:
brainly.com/question/548650
Answer:
both angles are the same, so you can use it interchangeably in proving.
But i suggest you to mantain only one, because it's easier to understand and it looks better.
The correct answer is C.
You can tell this by factoring the equation to get the zeros. To start, pull out the greatest common factor.
f(x) = x^4 + x^3 - 2x^2
Since each term has at least x^2, we can factor it out.
f(x) = x^2(x^2 + x - 2)
Now we can factor the inside by looking for factors of the constant, which is 2, that add up to the coefficient of x. 2 and -1 both add up to 1 and multiply to -2. So, we place these two numbers in parenthesis with an x.
f(x) = x^2(x + 2)(x - 1)
Now we can also separate the x^2 into 2 x's.
f(x) = (x)(x)(x + 2)(x - 1)
To find the zeros, we need to set them all equal to 0
x = 0
x = 0
x + 2 = 0
x = -2
x - 1 = 0
x = 1
Since there are two 0's, we know the graph just touches there. Since there are 1 of the other two numbers, we know that it crosses there.
Answer:
A translation
Step-by-step explanation:
:)