Answer:
A. NADH and FADH2 both donate electrons at the same location.
Explanation:
In the respiratory chain, four large protein complexes inserted into the mitochondrial inner membrane transport NADH and FADH₂ electrons (formed in glycolysis and the Krebs cycle) to oxygen gas, reducing them to NAD⁺ and FAD, respectively.
These electrons have great affinity for oxygen gas and, when combined with it, reduce it to water molecules at the end of the reaction.
Oxygen gas effectively participates in cellular respiration at this stage, so its absence would imply interruption of the process.
NADH and FADH₂ electrons, when attracted to oxygen, travel a path through protein complexes, releasing energy in this process.
The energy released by the NADH and FADH₂ electrons in the respiratory chain in theory yields <u>34</u> <u>ATP</u>, however, under normal conditions an average of 26 ATP molecules is formed.
If we consider that these 26 molecules are added to the two ATP formed in glycolysis and two ATP formed in the Krebs cycle, it can be said that cellular respiration reaches a maximum yield of 30 ATP per glucose molecule, although theoretically this number was 38 ATP per glucose molecule.
This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to increasing degrees of cooperation of local controllers: fully distributed or decentralized control, control with communication between controllers, coordination control, and multilevel control. The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems.
Examples and case studies are introduced in the first part of the text and developed throughout the book. They include:
<span>control of underwater vehicles,automated-guided vehicles on a container terminal,control of a printer as a complex machine, andcontrol of an electric power system.</span>
The book is composed of short essays each within eight pages, including suggestions and references for further research and reading.
By reading the essays collected in the book Coordination Control of Distributed Systems, graduate students and post-docs will be introduced to the research frontiers in control of decentralized and of distributed systems. Control theorists and practitioners with backgrounds in electrical, mechanical, civil and aerospace engineering will find in the book information and inspiration to transfer to their fields of interest the state-of-art in coordination control.
Answer:
Air pressure is caused by the weight of the air molecules above
Explanation:
Air pressure is caused by the weight of the air molecules above. Even tiny air molecules have some weight, and the huge numbers of air molecules that make up the layers of our atmosphere collectively have a great deal of weight, which presses down on whatever is below.
Answer:
A desirable intake of dietary fiber is 20-35 grams daily, according to the American Dietetic Association.
Explanation:
Dietary fiber has always been a part of a healthy, balanced eating lifestyle. Fiber has 2 types, soluble and insoluble. Soluble fiber is a <u>gelatin-like</u> substance when combined with water and when ingested, <u>can help slow the travel of food in the gut, making you feel</u> <em>"full."</em> Insoluble fiber or roughage is the <u>bulk-forming type</u>. It <u>holds water</u> in its structure, helping <u>regulate the bowel movements.</u>
Fiber, being a <u>complex carbohydrate</u>, can help <u>lessen the risk of an increase of bad cholesterol and blood sugar</u>. Examples of fiber-rich foods are whole grain products, barley, oats, grapes, etc.
Answer:
via hydrogen bonds; there are two between adenine and thymine and three between cytosine and guanine