1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BigorU [14]
3 years ago
15

Can someone please help me I don’t understand

Mathematics
1 answer:
lilavasa [31]3 years ago
5 0

Answer:

The ship is traveling at 25 mph

Step-by-step explanation:

12.5/0.5=25

25/1=25

37.5/1.5=25

The speed is constant (25) so the ship is moving at 25 mph

You might be interested in
Y=3x+4<br> x+4y=-10<br> solve for substitution
maria [59]
Y=3x+4.....eq.(i) x+4y=-10....(eq.ii) putting value of y in eq.(ii),we get, x+4(3x+4)=-10 or x+12x+16=-10 or,13x=-10+16 or,13x=6 ●#x=6÷13 putting value if x in eq.(i),we get y=3(6÷13)+4 or,y=18÷13+4 or,y=(18+52)÷13 ●#y=70÷13
3 0
4 years ago
B-2-11. Find the inverse Laplace transform of s + 1/s(s^2 + s +1)
Aleksandr-060686 [28]

Answer:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)

Step-by-step explanation:

let's start by separating the fraction into two new smaller fractions

.

First,<em> s(s^2+s+1)</em> must be factorized the most, and it is already. Every factor will become the denominator of a new fraction.

\frac{s+1}{s(s^{2} + s +1)}=\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}

Where <em>A</em>, <em>B</em> and <em>C</em> are unknown constants. The numerator of <em>s</em> is a constant <em>A</em>, because <em>s</em> is linear, the numerator of <em>s^2+s+1</em> is a linear expression <em>Bs+C</em> because <em>s^2+s+1</em> is a quadratic expression.

Multiply both sides by the complete denominator:

[{s(s^{2} + s +1)]\frac{s+1}{s(s^{2} + s +1)}=[\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}][{s(s^{2} + s +1)]

Simplify, reorganize and compare every coefficient both sides:

s+1=A(s^2 + s +1)+(Bs+C)(s)\\\\s+1=As^{2}+As+A+Bs^{2}+Cs\\\\0s^{2}+1s^{1}+1s^{0}=(A+B)s^{2}+(A+C)s^{1}+As^{0}\\\\0=A+B\\1=A+C\\1=A

Solving the system, we find <em>A=1</em>, <em>B=-1</em>, <em>C=0</em>. Now:

\frac{s+1}{s(s^{2} + s +1)}=\frac{1}{s}+\frac{-1s+0}{s^{2}+s+1}=\frac{1}{s}-\frac{s}{s^{2}+s+1}

Then, we can solve the inverse Laplace transform with simplified expressions:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=\mathcal{L}^{-1}\{\frac{1}{s}-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{\frac{1}{s}\}-\mathcal{L}^{-1}\{\frac{s}{s^{2}+s+1}\}

The first inverse Laplace transform has the formula:

\mathcal{L}^{-1}\{\frac{A}{s}\}=A\\ \\\mathcal{L}^{-1}\{\frac{1}{s}\}=1\\

For:

\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}

We have the formulas:

\mathcal{L}^{-1}\{\frac{s-a}{(s-a)^{2}+b^{2}}\}=e^{at}cos(bt)\\\\\mathcal{L}^{-1}\{\frac{b}{(s-a)^{2}+b^{2}}\}=e^{at}sin(bt)

We have to factorize the denominator:

-\frac{s}{s^{2}+s+1}=-\frac{s+1/2-1/2}{(s+1/2)^{2}+3/4}=-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}

It means that:

\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}\}

\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\mathcal{L}^{-1}\{\frac{1/2}{(s+1/2)^{2}+3/4}\}\\\\\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\frac{1}{2} \mathcal{L}^{-1}\{\frac{1}{(s+1/2)^{2}+3/4}\}

So <em>a=-1/2</em> and <em>b=(√3)/2</em>. Then:

\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}=e^{-\frac{t}{2}}[cos\frac{\sqrt{3}t }{2}]\\\\\\\frac{1}{2}[\frac{2}{\sqrt{3} } ]\mathcal{L}^{-1}\{\frac{\sqrt{3}/2 }{(s+1/2)^{2}+3/4}\}=\frac{1}{\sqrt{3} } e^{-\frac{t}{2}}[sin\frac{\sqrt{3}t }{2}]

Finally:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)

7 0
4 years ago
HELP PLEASE I'LL MARK BRAINLEST!!
Jet001 [13]

Answer:

s = \sqrt{60}

Step-by-step explanation:

A = s^{2}

so:

\sqrt{A} = \sqrt{s^2}

s = \sqrt{A}

A = 60

Therefore:

s = \sqrt{60}

8 0
4 years ago
Each team in a youth basketball league pays $ 984 to join the league. If a team consists of 12 players and the fee is divided eq
ANTONII [103]
984 divided by 12=82

82= fee

984+82=1066

Each player pays $1066

4 0
3 years ago
Y=6-4(2). What is the value of y=6-4x when x=2
Arturiano [62]

Answer:

y = -2

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • A decorator wants to line the bottom of 3 drawers with paper. If the bottom of each drawer measures 36 inches by 20 inches,
    7·2 answers
  • There was a 340,000 cattle placed on feed. Write an equivalent ration that could be used to find how many of these cattle were b
    12·1 answer
  • Write the ratio as a fraction Simplest Form . 20 books to 24 magazines
    13·1 answer
  • Solve.<br><br>3.5d + 8.25 = 3 + 5.25d<br><br>The solution is d = ____​
    11·2 answers
  • How do i solve this? Please tell me the answer with explnations
    10·2 answers
  • Enter numbers to evaluate -5<br> -5 – 7 = -5 +
    12·1 answer
  • List the sides from shortest to longest ​
    5·2 answers
  • Find the product.<br> (–12 - n)2
    5·2 answers
  • The graph shows the daily sales goal of
    7·1 answer
  • 1 + 1 = ? help now please asap!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!