The vertical angles are equal to each other, that is, one of the one-sided corners will be 116°.
The sum of the one-sided angles is 180°, which means: 4x+116 = 180°
4x = 180-116 => 4x = 64°
x = 64/4 = 16°.
The sum of two adjacent angles is 180°. which means, that: 2x-3y = 180-64 = 116°
2x-3y = 116°
-2x+3y = -116
-32+3y = -116
3y = -116-(-32)
3y = -84
y = -84/3 => y = -28.
It is B glad I could help!
Answer:
80 feet
Step-by-step explanation:
Given:
Initial speed of the car (
) = 40 ft/sec
Deceleration of the car (
) = -10 ft/sec²
Final speed of the car (
) = 0 ft/sec
Let the distance traveled by the car be 'x' at any time 't'. Let 'v' be the velocity at any time 't'.
Now, deceleration means rate of decrease of velocity.
So, 
Negative sign means the velocity is decreasing with time.
Now,
using chain rule of differentiation. Therefore,

Integrating both sides under the limit 40 to 0 for 'v' and 0 to 'x' for 'x'. This gives,
![\int\limits^0_{40} {v} \, dv=\int\limits^x_0 {-10} \, dx\\\\\left [ \frac{v^2}{2} \right ]_{40}^{0}=-10x\\\\-10x=\frac{0}{2}-\frac{1600}{2}\\\\10x=800\\\\x=\frac{800}{10}=80\ ft](https://tex.z-dn.net/?f=%5Cint%5Climits%5E0_%7B40%7D%20%7Bv%7D%20%5C%2C%20dv%3D%5Cint%5Climits%5Ex_0%20%7B-10%7D%20%5C%2C%20dx%5C%5C%5C%5C%5Cleft%20%5B%20%5Cfrac%7Bv%5E2%7D%7B2%7D%20%5Cright%20%5D_%7B40%7D%5E%7B0%7D%3D-10x%5C%5C%5C%5C-10x%3D%5Cfrac%7B0%7D%7B2%7D-%5Cfrac%7B1600%7D%7B2%7D%5C%5C%5C%5C10x%3D800%5C%5C%5C%5Cx%3D%5Cfrac%7B800%7D%7B10%7D%3D80%5C%20ft)
Therefore, the car travels a distance of 80 feet before stopping.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Slope Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Find points from chart.</em>
Point (2, 0)
Point (3, 0)
<u>Step 2: Find slope </u><em><u>m</u></em>
Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>. Rate of change and slope are identical.
- Substitute [SF]:

- Subtract:

- Divide:
