The volume of the candle initially is:
V=Ab*h
Area of the base of the cylinder: Ab=pi*r^2
pi=3.14
Radius of the base: r=4 cm
Height of the cylinder: h=6 cm
Ab=pi*r^2
Ab=3.14*(4 cm)^2
Ab=3.14*(16 cm^2)
Ab=50.24 cm^2
V=Ab*h
V=(50.24 cm^2)*(6 cm)
V=301.44 cm^3
The candle melts at a constant rate of:
r=(60 cm^3)/(2 hours)=(120 cm^3)/(4 hours)=(180 cm^3)/(6 hours)
r=30 cm^3/hour
The amount of candle melted off after 7 hours is:
A=(30 cm^3/hour)*(7 hours)
A=210 cm^3
The percent of candle that is melted off after 7 hours is:
P=(A/V)*100%
P=[(210 cm^3)/(301.44 cm^3)]*100%
P=(0.696656051)*100%
P=69.66560510%
Rounded to the nearest percent
P=70%
Answer: 70%
Answer:
E(w) = 1600000
v(w) = 240000
Step-by-step explanation:
given data
sequence = 1 million iid (+1 and +2)
probability of transmitting a +1 = 0.4
solution
sequence will be here as
P{Xi = k } = 0.4 for k = +1
0.6 for k = +2
and define is
x1 + x2 + ................ + X1000000
so for expected value for W
E(w) = E( x1 + x2 + ................ + X1000000 ) ......................1
as per the linear probability of expectation
E(w) = 1000000 ( 0.4 × 1 + 0.6 × 2)
E(w) = 1600000
and
for variance of W
v(w) = V ( x1 + x2 + ................ + X1000000 ) ..........................2
v(w) = V x1 + V x2 + ................ + V X1000000
here also same as that xi are i.e d so cov(xi, xj ) = 0 and i ≠ j
so
v(w) = 1000000 ( v(x) )
v(w) = 1000000 ( 0.24)
v(w) = 240000
<h2>25 </h2>
Step-by-step explanation:
<h3><em>=</em><em> </em><em>3</em><em> </em><em>×</em><em> </em><em>(</em><em>5</em><em> </em><em>-</em><em> </em><em>1</em><em>)</em><em> </em><em>+</em><em> </em><em>1</em><em>3</em></h3><h3><em>=</em><em> </em><em>3</em><em> </em><em>×</em><em> </em><em>4</em><em> </em><em>+</em><em> </em><em>1</em><em>3</em></h3><h3><em>=</em><em> </em><em>1</em><em>2</em><em> </em><em>+</em><em> </em><em>1</em><em>3</em></h3><h3><em>=</em><em> </em><em>2</em><em>5</em></h3>
<h2>MARK ME BRAINLIST</h2>
PLZ FOLLOW ME
8+.90+.07
This the answer because you have to make it as an addition way.
Hope I helped.