A) Use the distance formula to find the length of each side, and then add the lengths.

<u>Step-by-step explanation:</u>
We have ,
,
We know that ![sin\alpha = \frac{Perpendicular}{Hypotenuse} = \frac{Perpendicular}{\sqrt[2]{(Perpendicualr)^{2} + (Base)^{2})} }](https://tex.z-dn.net/?f=sin%5Calpha%20%20%3D%20%5Cfrac%7BPerpendicular%7D%7BHypotenuse%7D%20%3D%20%5Cfrac%7BPerpendicular%7D%7B%5Csqrt%5B2%5D%7B%28Perpendicualr%29%5E%7B2%7D%20%2B%20%28Base%29%5E%7B2%7D%29%7D%20%7D)
Substituting values of P & B , 
Now , 
⇒
×
×2
⇒ 
⇒
⇒
⇒
Answer: ask a parent or just google it
Step-by-step explanation:
Answer: D) (1.2,-4.7)
Step-by-step explanation:
plug in the end corrdinates like it says in the equation that the problem gives you.
Answer:
Step-by-step explanation:
-4 it’s closer to zero