(q ° r) = -32
(r ° q) = 101
1. Gather your data
2. organize your data from least to greatest
3. find the median of the data set
4. find the first and third quartiles
5. draw a plot line
6. mark your first, second and third quartiles on the plot line you created
7. make a box by drawing a horizontal line connecting your quartiles
8. make your outliers
9. connect your outliers to the box with the horizontal line
and there you go
Answer:
m∠ABD = 88º
m∠CBD = 23º
Step-by-step explanation:
(-10x + 58) + (6x + 41) = 111
Combine like terms
-4x + 99 = 111
Subtract 99 from both sides
-4x = 12
Divide both sides by -4
x = -3
------------------------
m∠ABD = -10x + 58
m∠ABD = -10(-3) + 58
m∠ABD = = 30 + 58
m∠ABD = 88º
m∠CBD = 6x + 41
m∠CBD = 6(-3) + 41
m∠CBD = -18 + 41
m∠CBD = 23º
Let N be the number of items sold and p the price.
Since the variation is inverse, then the relation between N and p is:

For N=20000 and p = $9.5, we get the formula:

If p = 8.75, then the number of items sold can be computed using the formula:
Question:
Howard is designing a chair swing ride. The swing ropes are 4 meters long, and in full swing they tilt in an angle of 23°. Howard wants the chairs to be 3.5 meters above the ground in full swing. How tall should the pole of the swing ride be? Round your final answer to the nearest hundredth.
Answer:
7.18 meters
Step-by-step explanation:
Given:
Length of rope, L = 4 m
Angle = 23°
Height of chair, H= 3.5 m
In this question, we are to asked to find the height of the pole of the swing ride.
Let X represent the height of the pole of the swing ride.
Let's first find the length of pole from the top of the swing ride. Thus, we have:

Substituting figures, we have:
Let's make h subject of the formula.

The length of pole from the top of the swing ride is 3.68 meters
To find the height of the pole of the swing ride, we have:
X = h + H
X = 3.68 + 3.5
X = 7.18
Height of the pole of the swing ride is 7.18 meters