Answer:
second division nondisjunction
Explanation:
We all know that all living organisms share several key characteristics or functions: order, sensitivity or response to the environment, reproduction, growth and development, regulation, homeostasis, and energy processing. When viewed together, these characteristics serve to define life.
Answer:
The humble sunflower appears not quite of this earth. Its yellow crowned head sits atop its stalk like a green broomstick. Its seeds, arranged in a logarithmic spiral, are produced by tiny flowers called disc florets that emerge from the center of its head and radiate outward. But aside from being a biological marvel, the sunflower is also often in the scientific spotlight.
From understanding how new plant species emerge to studying “solar tracking,” which is how the flowers align themselves with the sun’s position in the sky, sunflowers are a darling in the field of science. However, researchers can only get so far in understanding a plant without detailed genetic knowledge. And after close to a decade, it has finally unfurled itself.An international consortium of 59 researchers who set their sights on the laborious task of sequencing and assembling the sunflower’s genome published their results in a 2017 study in Nature. This achievement will provide a genetic basis for understanding how the sunflower responds and adapts to different environments. “We are on the cusp of understanding sunflower adaptability,” says Loren Rieseberg, a leading sunflower expert at the University of British Columbia and a supervisor of this study.
With its genome assembled, scientists are hopeful for the next phase of the sunflower’s scientific career: as a “model crop” for studying climate adaptability in plants. This task is more complex and urgent now than ever. Climate change, according to a paper in the Annals of Botany, “will influence all aspects of plant biology over the coming decades,” posing a threat to crops and wild plants alike.
Answer:
fills container, no visible shape, flows
Monoploid organisms reproduce asexually since they need to transmit all of their genetic material to their offspring. Diploid organisms, have 2 copies of their genetic material that differ slightly in their genes. Since the progeny gets half of the DNA from each parent, we have that new combinations can emerge; for example, if the mother is AA for some allele and the father aa, their offspring will be Aa, a new genotype. This might have different implications (for example, the recessive gene for thalassemia also provides resistance to malaria). Finally, during meiosis, there is also an event called crossover that increases the genetic variation of the offspring.