3y+x=12 in slope intercept form is y=-1/3+4
Answer:
fx=ax-ap+6x-6g is the simplified answer
Step-by-step explanation:
f(x)= a(x-p) 3(x-g) 2
fx= ax-ap+ (3x-3g)2
fx= ax-ap+ 6x-6g
The triangles in question 15 are proportional, so they are similar. Meaning that their angles are the same, so <B=<E, or <B=30 degrees.
For #17, the formula for the area of a circle is a=pi*r^2. The radius, in this instance, is 1/2 of 27, or 13.5. Plug it into the formula: a=pi*13.5^2. a=pi*182.25. If you want to simplify it further, a=572.265.
#19, same formula as #17. a=pi*r^2. a=pi*6^2. a=pi*36. a=113.04 or 113m^2.
#20, Wow this is a complicated one. Anyway, the area of the square in the middle is obviously 9m. The area of all of the circles is a=pi*1.5^2 DIVIDED BY TWO, since they're half circles. a=pi*2.25/2, a=7.065/2. a=3.5325. Since there are 4 of them, multiply that number by 4... 14.13. Add 9 to that to get the area of the whole figure: 23.13m(^2). Hope this helps.
Answer:
f
Step-by-step explanation:
Answer:
Remember, a basis for the row space of a matrix A is the set of rows different of zero of the echelon form of A.
We need to find the echelon form of the matrix augmented matrix of the system A2x=b2
![B=\left[\begin{array}{cccc}1&2&3&1\\4&5&6&1\\7&8&9&1\\3&2&4&1\\6&5&4&1\\9&8&7&1\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%262%263%261%5C%5C4%265%266%261%5C%5C7%268%269%261%5C%5C3%262%264%261%5C%5C6%265%264%261%5C%5C9%268%267%261%5Cend%7Barray%7D%5Cright%5D)
We apply row operations:
1.
- To row 2 we subtract row 1, 4 times.
- To row 3 we subtract row 1, 7 times.
- To row 4 we subtract row 1, 3 times.
- To row 5 we subtract row 1, 6 times.
- To row 6 we subtract row 1, 9 times.
We obtain the matrix
![\left[\begin{array}{cccc}1&2&3&1\\0&-3&-6&-3\\0&-6&-12&-6\\0&-4&-5&-2\\0&-7&-14&-5\\0&-10&-20&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%262%263%261%5C%5C0%26-3%26-6%26-3%5C%5C0%26-6%26-12%26-6%5C%5C0%26-4%26-5%26-2%5C%5C0%26-7%26-14%26-5%5C%5C0%26-10%26-20%26-8%5Cend%7Barray%7D%5Cright%5D)
2.
- We subtract row two twice to row three of the previous matrix.
- we subtract 4/3 from row two to row 4.
- we subtract 7/3 from row two to row 5.
- we subtract 10/3 from row two to row 6.
We obtain the matrix
![\left[\begin{array}{cccc}1&2&3&1\\0&-3&-6&-3\\0&0&0&0\\0&0&3&2\\0&0&0&2\\0&0&0&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%262%263%261%5C%5C0%26-3%26-6%26-3%5C%5C0%260%260%260%5C%5C0%260%263%262%5C%5C0%260%260%262%5C%5C0%260%260%262%5Cend%7Barray%7D%5Cright%5D)
3.
we exchange rows three and four of the previous matrix and obtain the echelon form of the augmented matrix.
![\left[\begin{array}{cccc}1&2&3&1\\0&-3&-6&-3\\0&0&3&2\\0&0&0&0\\0&0&0&2\\0&0&0&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%262%263%261%5C%5C0%26-3%26-6%26-3%5C%5C0%260%263%262%5C%5C0%260%260%260%5C%5C0%260%260%262%5C%5C0%260%260%262%5Cend%7Barray%7D%5Cright%5D)
Since the only nonzero rows of the augmented matrix of the coefficient matrix are the first three, then the set
![\{\left[\begin{array}{c}1\\2\\3\end{array}\right],\left[\begin{array}{c}0\\-3\\-6\end{array}\right],\left[\begin{array}{c}0\\0\\3\end{array}\right] \}](https://tex.z-dn.net/?f=%5C%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C2%5C%5C3%5Cend%7Barray%7D%5Cright%5D%2C%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C-3%5C%5C-6%5Cend%7Barray%7D%5Cright%5D%2C%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C3%5Cend%7Barray%7D%5Cright%5D%20%5C%7D)
is a basis for Row (A2)
Now, observe that the last two rows of the echelon form of the augmented matrix have the last coordinate different of zero. Then, the system is inconsistent. This means that the system has no solutions.