<span> I am assuming you want to prove:
csc(x)/[1 - cos(x)] = [1 + cos(x)]/sin^3(x).
</span>
<span>If we multiply the LHS by [1 + cos(x)]/[1 + cos(x)], we get:
LHS = csc(x)/[1 - cos(x)]
= {csc(x)[1 + cos(x)]/{[1 + cos(x)][1 - cos(x)]}
= {csc(x)[1 + cos(x)]}/[1 - cos^2(x)], via difference of squares
= {csc(x)[1 + cos(x)]}/sin^2(x), since sin^2(x) = 1 - cos^2(x).
</span>
<span>Then, since csc(x) = 1/sin(x):
LHS = {csc(x)[1 + cos(x)]}/sin^2(x)
= {[1 + cos(x)]/sin(x)}/sin^2(x)
= [1 + cos(x)]/sin^3(x)
= RHS.
</span>
<span>I hope this helps! </span>
Hello!
Let's multiply each thing here.
4(4)=16
3(5)=15
15=16=31
50-31=29
Therefore, her change is $29.
I hope this helps!
<span><span>y = 2 + 2sec(2x)
The upper part of the range will be when the secant has the smallest
positive value up to infinity.
The smallest positive value of the secant is 1
So the minimum of the upper part of the range of
y = 2 + 2sec(2x) is 2 + 2(1) = 2 + 2 = 4
So the upper part of the range is [4, )
The lower part of the range will be from negative infinity
up to when the secant has the largest negative value.
The largest negative value of the secant is -1
So the maximum of the lower part of the range of
y = 2 + 2sec(2x) is 2 + 2(-1) = 2 - 2 = 0
So the lower part of the range is (, 0].
Therefore the range is (, 0] U [4, )
</span>
</span>