The value of f(-6) is -12.2
Explanation:
Given that the function ![f(x)=\frac{100}{-10+e^{-0.1\left(x\right)}}](https://tex.z-dn.net/?f=f%28x%29%3D%5Cfrac%7B100%7D%7B-10%2Be%5E%7B-0.1%5Cleft%28x%5Cright%29%7D%7D)
We need to determine the value of f(-6)
The value of f(-6) can be determined by substituting the value for
in the function and simplify the function.
Hence, let us substitute
in the function, we get,
![f(-6)=\frac{100}{-10+e^{-0.1\left(-6\right)}}](https://tex.z-dn.net/?f=f%28-6%29%3D%5Cfrac%7B100%7D%7B-10%2Be%5E%7B-0.1%5Cleft%28-6%5Cright%29%7D%7D)
Let us apply the rule
, we get,
![f(-6)=\frac{100}{-10+e^{0.1\left(6\right)}}](https://tex.z-dn.net/?f=f%28-6%29%3D%5Cfrac%7B100%7D%7B-10%2Be%5E%7B0.1%5Cleft%286%5Cright%29%7D%7D)
Multiplying the numbers, we get,
![f(-6)=\frac{100}{-10+e^{0.6}}](https://tex.z-dn.net/?f=f%28-6%29%3D%5Cfrac%7B100%7D%7B-10%2Be%5E%7B0.6%7D%7D)
The value of ![e^{0.6}=1.822](https://tex.z-dn.net/?f=e%5E%7B0.6%7D%3D1.822)
Substituting the value of
, we get,
![f(-6)=\frac{100}{-10+1.822}](https://tex.z-dn.net/?f=f%28-6%29%3D%5Cfrac%7B100%7D%7B-10%2B1.822%7D)
Subtracting the denominator, we have,
![f(-6)=\frac{100}{-8.178}](https://tex.z-dn.net/?f=f%28-6%29%3D%5Cfrac%7B100%7D%7B-8.178%7D)
Dividing, we have,
![f(-6)=-12.228](https://tex.z-dn.net/?f=f%28-6%29%3D-12.228)
Rounding off to the nearest tenth, we have,
![f(-6)=-12.2](https://tex.z-dn.net/?f=f%28-6%29%3D-12.2)
Thus, the value of f(-6) is -12.2
You add them and then divide by how many numbers there are.
a. (3+43)/2 = 23
b. 0
c. -1
Answer:
<h2>For c = 5 → two solutions</h2><h2>For c = -10 → no solutions</h2>
Step-by-step explanation:
We know
![|a|\geq0](https://tex.z-dn.net/?f=%7Ca%7C%5Cgeq0)
for any real value of <em>a</em>.
|a| = b > 0 - <em>two solutions: </em>a = b or a = -b
|a| = 0 - <em>one solution: a = 0</em>
|a| = b < 0 - <em>no solution</em>
<em />
|x + 6| - 4 = c
for c = 5:
|x + 6| - 4 = 5 <em>add 4 to both sides</em>
|x + 6| = 9 > 0 <em>TWO SOLUTIONS</em>
for c = -10
|x + 6| - 4 = -10 <em>add 4 to both sides</em>
|x + 6| = -6 < 0 <em>NO SOLUTIONS</em>
<em></em>
Calculate the solutions for c = 5:
|x + 6| = 9 ⇔ x + 6 = 9 or x + 6 = -9 <em>subtract 6 from both sides</em>
x = 3 or x = -15
Answer:
step 3
Step-by-step explanation:
3 x 8 = 24 thats correct but 5 x 5 = 25 not 5
i took the test
Lololololol. I long since forgot how to do this. rip