Answer:
Moles of NO₂ = 0.158
Explanation:
SO 2 ( g ) + NO 2 ( g ) ⇄ SO 3 ( g ) + NO ( g )
According to the law of mass equation
= ![\frac{[SO_{3} ][NO]}{[SO_{2}][NO_{2} ]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BSO_%7B3%7D%20%5D%5BNO%5D%7D%7B%5BSO_%7B2%7D%5D%5BNO_%7B2%7D%20%20%5D%7D)
⇒ 3.10 =
At equilibrium [SO₃] = [NO]
⇒ [NO₂] = 
⇒ [NO₂] = 0.158
So. number of moles of NO₂ at equilibrium added = 0.158
Answer:
Order of increasing strength of intermolecular attraction:
>
>
> Ar
Explanation:
can form hydrogen bond as H atom is attached with electronegative atom O.
Rest three,
,
, Ar are non-polar molecules.
In non-polar molecules, van der Waal's intermolecular forces of attractions exist. Hydrogen bonding is stronger intermolecular attraction then van der Waal's intermolecular forces of attraction, hence,
has strongest intermolecular attractions.
Ar will have least intermolecular attraction, as it behaves almost as ideal gas and there is no intermolecular attraction exist between molecules of ideal gases.
Molecular size and mass of
is high as compared to
.
van der Waals intermolecular forces of attraction increases with increase in size.
Therefore,
Order of increasing strength of intermolecular attraction will be:
>
>
> Ar
Answer : 0.25 M
explanation :
- Molarity is the number of moles of solute per liters of solvent.
- Molarity (M) = (n) / V (liter) = 2 / 8 = 0.25 M
Answer: False
Explanation:
4C2H6 + 7O2 --> 6H2O + 4CO2
8 Carbons on the reactant side, but 4 Carbons on the Product
24 Hydrogens on Reactant, 12 H on product
But Oxygen is balanced, 14 on each side
I believe KI is not a a binary molecule.
Your welcome