<span>2<span>C6</span><span>H6</span>O(l)+17<span>O2</span>−−>12C<span>O2</span>(g)+12<span>H2</span>O(l)</span>
<span>2S<span>O2</span>(g)+<span>O2</span>(g)−−>2S<span>O3</span>(g)</span>
<span><span>N2</span>(g)+<span>O2</span>(g)−−>2NO(g)</span>
<span>2Na(s)+B<span>r2</span>(l)−−>2NaBr(s)</span><span>
On the 1st 3 I have
12 -17 = -5
2 - 3 = -1
2 - 2 = 0
For the last one:
</span><span>Delta n=0</span><span>
</span>
Note: You are calculating mass which is determine the gram(g)
You will have to cancel out the mol
(28.97 g/mol) * mol will give grams by itself
Given the mass 3.33 moles of air
28.97 g/mol * 3.33 mol = 96.47 grams
Solution: 96.5 grams
A molecule of an organic compound contains at least one atom of "<span>(1) carbon". This is referred to as organic chemistry, since all living matter is carbon-based. </span>
This is hard to show but here is how you would determine these. NOTE each dot is an electron.
<span>Question 1) </span>
<span>F-H </span>
<span>1) determine the valance electrons for each. F has 7 and H has 1 </span>
<span>2) one electron from both F and H form the bond "-" which means that you still have 6 electrons to place around F and none to place around H. Place the 6 in sets of 2 around the F </span>
<span>.. </span>
<span>F-H </span>
<span>¨ </span>
<span>Question 2) </span>
<span>2) H-O-H </span>
<span>H has 1 valence electron minus 1 used in the bond to O = 0 electrons to place </span>
<span>H has 1 valence electron minus 1 used in the bond to O = 0 electrons to place </span>
<span>O has 6 valence electrons minus 2 used in the bonds to the H's = 4 electrons to place </span>
<span>H-O-H: place two dots above and below the oxygen </span>
<span>Question 3) </span>
<span>3) O=N----H : NOTE: a double bond requires O and N to share two of their electrons each </span>
<span>O has 6 valence electrons minus 2 used in the bonds to N = 4 electrons to place </span>
<span>N has 5 valence electrons minus 3 used in the bonds to O and H = 2 electrons to place </span>
<span>H has 1 valence electron minus 1 used in the bond to N = 0 electrons to place </span>
<span>place the 2 dots on top and bottom of oxygen. </span>
<span>place 2 above the N </span>