1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
3 years ago
5

Find the slope of the line that goes through (6, 10) and (2,5)

Mathematics
2 answers:
Paul [167]3 years ago
8 0

Answer:

-5/-4

Step-by-step explanation:

m=y2-y1/x2-x1

m=5-10/2-6

m=-5/-4

-Dominant- [34]3 years ago
6 0

Answer:

1.25

Step-by-step explanation:

Slope m= 5-10/ 2-6

m= -5/-4

m= 1.25

You might be interested in
G(a) = 3a + 2<br> f(a)=2a-4<br> Find (g/f)(3)
Basile [38]

Answer:(gf)(3)=g(3)f(3) g(a)=3a+2 or g(3)=3(3)+2=9+2 =11 f(a)=2a−4 f(3)=2(3)−4=6−4=2 g(3)f(3)=112. Answer  

Step-by-step explanation:

7 0
2 years ago
Will Mark Brainliest
GaryK [48]

The correct answer is D

5 0
2 years ago
Read 2 more answers
HELP ME OUT PLS!!!!!​
pantera1 [17]

The Answer Is C. 64, hope I helped

4 0
2 years ago
Read 2 more answers
The points scored by a basketball team in its last 6 games
Debora [2.8K]

Answer:

73+78+85+84+37+115 because you will add all point scored by the last 6games =471

7 0
2 years ago
La barbería El Caleño, tiene en promedio 120 clientes a la semana a
Luba_88 [7]

Queremos maximizar el precio de tal forma que los ingresos no disminuyan.

Ese maximo precio es: $14,040.6

Sabemos que actualmente el precio es:

p = $6,000

El número de clientes es:

C = 120

Actualmente los ingresos son el producto de esos dos números, es decir:

ingresos = $6,000*120 = $720,000

Ahora sabemos que por cada incremento de $700 en el precio, el número de clientes decrece en 10.

Entonces podemos escribir el número de clientes como una ecuación lineal.

C(p) = a*p + b

tal que tenemos dos puntos en esa linea:

($6,000, 120)

($6,700, 110)

La pendiente es:

a = \frac{110 - 120}{\$6,700 - \$6,000} = \frac{-10}{\$ 700}

Entonces tenemos:

C(p) = (-10/$700)*p + b

Sabemos que:

C($6,000) = 120 = (-10/$700)*$6,000 + b

                     120 = -85.71 + b

                     120 + 85.71 = b =

Entonces la ecuación lineal es:

C(p) = (-10/$700)*p + 205.71

Los ingresos serán dados por:

ingresos = C(p)*p = (-10/$700)*p^2 + 205.71*p

Y queremos maximizar p de tal forma que esto sea igual a lo que obtuvimos antes:

(-10/$700)*p^2 + 205.71*p = $720,000

Entonces debemos resolver la ecuación cuadratica:

(-10/$700)*p^2 + 205.71*p - $720,000 = 0.

Las soluciones son dadas por la formula de Bhaskara.

p = \frac{-205.71 \pm \sqrt{(205.71)^2 - 4*(-10/\$ 700)*\$ 720,000} }{2*(-10/\$ 700)} \\\\p = \frac{-205.71 \pm 195.45}{(-20/\$ 700)}

La solución de maximo valor es:

p = (-205.71 - 195.45)/(-20/$700) = $14,040.6

Sí quieres aprender más, puedes leer.

brainly.com/question/8926135

7 0
2 years ago
Other questions:
  • Is a number 36 a perfect square and why​
    11·1 answer
  • Which of the following is a true statement?
    11·1 answer
  • What is the image of (9,-5) after a dilation with the scale factor of 2.5?​
    7·1 answer
  • A cylindrical water tank's height is 48 feet and the diameter is 30 feet. Considering that 1 cubic yard = 202 gallons, how many
    7·1 answer
  • PLEASE HURRY!!!!
    12·2 answers
  • When cut into 10 equal slices, each slice is 1/10 of the pizza. Express how much of the pizza 7 of these slices would be in deci
    14·1 answer
  • 4 (2x - 8) + 5 (x + 4)
    9·2 answers
  • Hi, can someone help me with this?<br><br> Solve the system of equations: <br> Y= 2x-4 <br> X= y+1
    15·1 answer
  • three roommates agreed to split the cost of food and rent evenly. last month they spent a total of 349.66 for food and 365 for r
    10·1 answer
  • Plant a starts from 2 incher and grows at a constsnt rate of 3 inches every 4 week
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!