Answer:
Error is in between the second and third step
the exponents must be subtracted
Step-by-step explanation:
he elements of the Klein <span>44</span>-group sitting inside <span><span>A4</span><span>A4</span></span> are precisely the identity, and all elements of <span><span>A4</span><span>A4</span></span>of the form <span><span>(ij)(kℓ)</span><span>(ij)(kℓ)</span></span> (the product of two disjoint transpositions).
Since conjugation in <span><span>Sn</span><span>Sn</span></span> (and therefore in <span><span>An</span><span>An</span></span>) does not change the cycle structure, it follows that this subgroup is a union of conjugacy classes, and therefore is normal.
Answer:
cool
Step-by-step explanation:
Answer:
Since the exponent of the scientific notation is positive, move the decimal point 66 places to the right.
4000000
This does not appear to be a right triangle. However, we know 2 sides and the included angle, so can find the unknown side length. Let x represent this length. Then:
x^2 = (9 m)^2 + (12 m)^2 - 2(9m)(12 m)*cos 30 degrees, or
x^2 = 81 + 144 - 216(sqrt(3) / 2). Please solve for x^2 and then solve the result for x, making sure to choose the positive value. The result will be the length of the side opposite the 30 degree angle.
With 1 of 3 angles known, and 3 of 3 sides known, you can use the Law of Sines to find the other two angles. As a reminder, the Law of Sines looks like this:
a b c
-------- = --------- = ----------
sin A sin B sin C.
You can give the 30-deg angle any name you want; then a, the length of the side opposite the 30-deg angle, which you have just found. And so on.