1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
m_a_m_a [10]
2 years ago
8

El 10% de los huevos de un supermercado están rotos, haya la probabilidad de que un cliente que compra media docena de huevos en

cuentre como mucho un huevo roto
Mathematics
1 answer:
crimeas [40]2 years ago
5 0

Answer:  

La probabilidad de encontrar como mucho un huevo roto es 0,8857.

             

Step-by-step explanation:  

Podemos calcular la probabilidad de econtrar un huevo roto usando la ecuación de distribución binomial:

P (x) = \left(\begin{array}{c}n&x\end{array}\right)p^{x}(1 - p)^{n-x}

En donde:

p: es la probablidad de encontrar huevos rotos = 10% = 0,1      

x: es el número de éxitos

n: es el número de ensayos = 6 (media docena de huevos)

Ahora, como nos piden la probabilidad de enontrar como mucho un huevo roto, esto quiere decir que debemos encontar la suma de la probablidad de encontar un huevo roto con la probabilidad de encontrar ninguno roto:

P = P(0) + P(1)

P = \left(\begin{array}{c}6&0\end{array}\right)0,1^{0}(1 - 0,1)^{6-0} + \left(\begin{array}{c}6&1\end{array}\right)0,1^{1}(1 - 0,1)^{6-1} = 0,5314 + 0,3543 = 0,8857

Entonces, la probabilidad de encontrar como mucho un huevo roto es 0,8857.

Espero que te sea de utilidad!                                                                                                                                                                                            

You might be interested in
An inequality is shown: −np − 4 ≤ 2(c − 3) Which of the following solves for n?
sesenic [268]

Answer:

\huge\boxed{n\leq\dfrac{2-2c}{p}\ \text{for}\ p0}

Step-by-step explanation:

-np-4\leq2(c-3)\qquad\text{use the distributive property}\\\\-np-4\leq2c-6\qquad\text{add 4 to both sides}\\\\-np\leq2c-2\qquad\text{change the signs}\\\\np\geq2-2c\qquad\text{divide both sides by}\ p\neq0\\\\\text{If}\ p0 ,\ \text{then}\\\boxed{n\geq\dfrac{2-2c}{p}}

6 0
2 years ago
Katie and jennifer are playing a game. katie and jennifer each started with 100 points. at the end of each turn katies points do
ella [17]
It is the fourth round and this is because in round one Katie has 200 and Jenny will have 300.In round two katie will have 400 and Jennifer will have 500.In round 3 Katie will have 600 and and jennifer will have 800.I
3 0
2 years ago
I need help on this question, can anyone help
velikii [3]

Answer:

no escuche a estas personas en el sitio web, la mayoría son niños y no saben estas cosas

Step-by-step explanation:

Algunos de mis favoritos !!

Mi familia

Esposo, Kelly, de 25 años

Cuatro niños

Jessie, nuestra chiweenie

Equipos deportivos

Comida y bebida

Dulce

Color

Libros

Película

Aficiones

No me gusta

café

acostado

De fumar

Tocino

Trastorno

Bo

Falta de esfuerzo

6 0
2 years ago
the kline family went on vacation last year and paid $199 a night for the hotel room. This year, the price has increased by 5% .
dangina [55]

Answer: $208.95

Step-by-step explanation: $199 x .05= 9.95 + $199= $208.95

8 0
2 years ago
In an effort to estimate the mean of amount spent per customer for dinner at a major Lawrence restaurant, data were collected fo
larisa86 [58]

Answer:

The 99% confidence interval for the population mean is 22.96 to 26.64

Step-by-step explanation:

Consider the provided information,

A sample of 49 customers. Assume a population standard deviation of $5. If the sample mean is $24.80,

The confidence interval if 99%.

Thus, 1-α=0.99

α=0.01

Now we need to determine z_{\frac{\alpha}{2}}=z_{0.005}

Now by using z score table we find that  z_{\frac{\alpha}{2}}=2.58

The boundaries of the confidence interval are:

\mu-z_{\frac{\alpha}{2}}\times \frac{\sigma}{\sqrt{n} }\\24.80-2.58\times \frac{5}{\sqrt{49}}=22.96\\\mu+z_{\frac{\alpha}{2}}\times \frac{\sigma}{\sqrt{n} }\\24.80+2.58\times \frac{5}{\sqrt{49}}=26.64

Hence, the 99% confidence interval for the population mean is 22.96 to 26.64

3 0
3 years ago
Other questions:
  • Which step would help solve the equation?<br> 2(z - 12) - 1 = z - 25 + z
    10·2 answers
  • Find the unknow number 7/12 - ? = 1/6
    6·2 answers
  • Factor 10n^2 - 37n-36<br>​
    9·1 answer
  • Question 7 (5 points)
    12·2 answers
  • Find ∠L using law of sines
    12·1 answer
  • Vivi is a drummer for a band. She burns 756756756 calories while drumming for 333 hours. She burns the same number of calories e
    6·1 answer
  • What is the distance between the points (-5,-4) and (3,-3). ​
    11·1 answer
  • Greatest common factor of 76 and 675
    13·1 answer
  • An animal adoption agency tracked the number of animals remaining to be adopted, as shown in the graph.
    6·1 answer
  • One step equations integers<br><br> 8y = 48
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!