Answer:
A graph shows zeros to be ±3. Factoring those out leaves the quadratic
(x-2)² +1
which has complex roots 2±i.
The function has roots -3, 3, 2-i, 2+i.
Step-by-step explanation:
Answer:
6x³ - 8x + 9
Step-by-step explanation:
Step 1: Write out expression
2x + 7 + 6x³ - 1 + 3 - 6x - 4x
Step 2: Combine like terms (x)
6x³ - 8x + 7 - 1 + 3
Step 3: Combine like terms (constants)
6x³ - 8x + 9
Answer:

Step-by-step explanation:

•you divide both sides by 21 to leave x alone
Apply the rule: 
![3[2 ln(x-1) - lnx] + ln(x+1)=3[ln(x-1)^{2} - lnx ] + ln(x+1)](https://tex.z-dn.net/?f=3%5B2%20ln%28x-1%29%20-%20lnx%5D%20%2B%20ln%28x%2B1%29%3D3%5Bln%28x-1%29%5E%7B2%7D%20-%20lnx%20%5D%20%2B%20ln%28x%2B1%29)
Apply the rule : 
![3[2 ln(x-1) - lnx] + ln(x+1)=3ln\frac{(x-1)^{2} }{x} + ln(x+1)](https://tex.z-dn.net/?f=3%5B2%20ln%28x-1%29%20-%20lnx%5D%20%2B%20ln%28x%2B1%29%3D3ln%5Cfrac%7B%28x-1%29%5E%7B2%7D%20%7D%7Bx%7D%20%2B%20ln%28x%2B1%29)
Apply the rule: 
![3[ln (x-1)^{2} -ln x]+ln (x+1)= ln \frac{(x-1)^{6} }{x^{3} } +log(x+1)](https://tex.z-dn.net/?f=3%5Bln%20%28x-1%29%5E%7B2%7D%20-ln%20x%5D%2Bln%20%28x%2B1%29%3D%20ln%20%5Cfrac%7B%28x-1%29%5E%7B6%7D%20%7D%7Bx%5E%7B3%7D%20%7D%20%2Blog%28x%2B1%29)
Finally, apply the rule: log a + log b = log ab
![3[ln(x-1)^{2} -ln x]+log(x+1)=ln\frac{(x-1)^{6}(x+1) }{x^{3} }](https://tex.z-dn.net/?f=3%5Bln%28x-1%29%5E%7B2%7D%20-ln%20x%5D%2Blog%28x%2B1%29%3Dln%5Cfrac%7B%28x-1%29%5E%7B6%7D%28x%2B1%29%20%7D%7Bx%5E%7B3%7D%20%7D)