According to the law of sines:

Using the given values, we can find the angle B and find the number of possible triangles that can be formed.

The range of sin is from -1 to 1. The above expression does not yield any possible value of B, as sin of no angle can be equal to 1.45.
Therefore, we can conclude that no triangle exists with the given conditions.
There correct answer is B!
Answer:
srry man i suck at civics, but i think it is B?
Step-by-step explanation:
Answer:
% Remaining![= [1-(1/2)^{\frac{t}{2.6}}]x100](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7Bt%7D%7B2.6%7D%7D%5Dx100%20)
And replacing the value t =5.5 hours we got:
% Remaining![= [1-(1/2)^{\frac{5.5}{2.6}}]x100 =76.922\%](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7B5.5%7D%7B2.6%7D%7D%5Dx100%20%3D76.922%5C%25)
Step-by-step explanation:
Previous concepts
The half-life is defined "as the amount of time it takes a given quantity to decrease to half of its initial value. The term is most commonly used in relation to atoms undergoing radioactive decay, but can be used to describe other types of decay, whether exponential or not".
Solution to the problem
The half life model is given by the following expression:

Where A(t) represent the amount after t hours.
represent the initial amount
t the number of hours
h=2.6 hours the half life
And we want to estimate the % after 5.5 hours. On this case we can begin finding the amount after 5.5 hours like this:

Now in order to find the percentage relative to the initial amount w can use the definition of relative change like this:
% Remaining = 
We can take common factor
and we got:
% Remaining![= [1-(1/2)^{\frac{t}{2.6}}]x100](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7Bt%7D%7B2.6%7D%7D%5Dx100%20)
And replacing the value t =5.5 hours we got:
% Remaining ![= [1-(1/2)^{\frac{5.5}{2.6}}]x100 =76.922\%](https://tex.z-dn.net/?f=%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7B5.5%7D%7B2.6%7D%7D%5Dx100%20%3D76.922%5C%25)
Answer:
Image result for State the domain and range in set notation
The domain is the set of all first elements of ordered pairs (x-coordinates). The range is the set of all second elements of ordered pairs (y-coordinates). Only the elements "used" by the relation or function constitute the range. Domain: all x-values that are to be used (independent values).
Step-by-step explanation: