Answer:x=100
Step-by-step explanation:
Since you know that g(x)=3x-11 all you have to do is substitute that into g(x)=289. So you get 3x-11=289. To get x you have to add 11 on both sides.
3x-11=289
+11 +11
----------------
3x = 300
Divide 3 on both sides to get x by itself
3x =300
---- -------
3 3
x=100
Answer:
Option c, A square matrix
Step-by-step explanation:
Given system of linear equations are



Now to find the type of matrix can be formed by using this system
of equations
From the given system of linear equations we can form a matrix
Let A be a matrix
A matrix can be written by
A=co-efficient of x of 1st linear equation co-efficient of y of 1st linear equation constant of 1st terms linear equation
co-efficient of x of 2st linear equation co-efficient of y of 2st linear equation constant of 2st terms linear equation
co-efficient of x of 3st linear equation co-efficient of y of 3st linear equation constant of 3st terms linear equation 
which is a
matrix.
Therefore A can be written as
A= ![\left[\begin{array}{lll}3&-2&-2\\7&3&26\\-1&-11&46\end{array}\right] 3\times 3](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Blll%7D3%26-2%26-2%5C%5C7%263%2626%5C%5C-1%26-11%2646%5Cend%7Barray%7D%5Cright%5D%203%5Ctimes%203)
Matrix "A" is a
matrix so that it has 3 rows and 3 columns
A square matrix has equal rows and equal columns
Since matrix "A" has equal rows and columns Therefore it must be a square matrix
Therefore the given system of linear equation forms a square matrix
Are you sure this is written correctly. It is not factorable as it is
Answer:
=6
Step-by-step explanation:
(5×8)×(5-2)/(5×4)
Numerator =40×3
=120
Denominator = 5×4
=20
simplifying 120/20
=6