Answer:
Step-by-step explanation:
i). 

= 8a²
ii).
= 
= 
= 9a²b²c²
The value of ∠X = 58.11°, If ΔWXY, the measure of ∠Y=90°, XW = 53, YX = 28, and WY = 45.
Step-by-step explanation:
The given is,
In ΔWXY, ∠Y=90°
XW = 53
YX = 28
WY = 45
Step:1
Ref the attachment,
Given triangle XWY is right angled triangle.
Trigonometric ratio's,
∅
For the given attachment, the trigonometric ratio becomes,
∅
.....................................(1)
Let, ∠X = ∅
Where, XY = 28
XW = 53
Equation (1) becomes,
∅ 
∅ = 0.5283
∅ =
(0.5283)
∅ = 58.109°
Result:
The value of ∠X = 58.11°, If ΔWXY, the measure of ∠Y=90°, XW = 53, YX = 28, and WY = 45.
Answer:

Step-by-step explanation:
<u>The Inverse of a Function</u>
The procedure to find the inverse of the function is:
* Write the function as a two-variable equation:

* Solve the equation for x.
Multiply by 3x-1

Divide by y:

Sum 1:

Operate the right side:

Divide by 3:

* Swap the variables:

Write back into function form:

Answer: heres the answer for future people lel
Answer:
j² - 5j²k - 2
Step-by-step explanation:
3j² - j²k - 6 - 4j²k - 2j² + 4
To simplify this polynomial, we can collect like terms. A term is number(s) or variable(s) that are grouped together by multiplication. <u>Like terms have the same variable and exponent</u>.
We have three groups of like terms:
The j-squares (j²), the j-squared k (j²k) and the constants (no variable).
Remember to include the negatives!
The j-squares are: 3j² ; -2j²
The j-squares k are: - j²k ; - 4j²k
The constants are: - 6 ; 4
Simplify:
3j² - j²k - 6 - 4j²k - 2j² + 4
Rearrange the polynomial by like terms
= (- j²k - 4j²k) + (3j² - 2j²) + (- 6 + 4)
Add or subtract the like terms
= (-5j²k) + (j²) + (-2)
Remove brackets and rearrange so the negative is not first
= j² + - 5j²k + - 2
Simplify where two signs are together. Adding a negative is subtraction.
= j² - 5j²k - 2 Simplified