1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergij07 [2.7K]
3 years ago
15

Can you help me how to do this question.​

Mathematics
1 answer:
amm18123 years ago
8 0

Answer: It should be the last one i think.

Step-by-step explanation:

You might be interested in
A bag contains red and blue marbles, such that the probability of drawing a blue marble is . An experiment consists of drawing a
nika2105 [10]
I think the answer is b but not sure
6 0
3 years ago
Read 2 more answers
Can someone please explain how to solve this?<br> 1/2x + 3/2 (x+1) - 1/4 = 5 <br> Thank you!!
Snezhnost [94]

Answer:

x = 1.875

Step-by-step explanation:

<u>Step 1:  Distribute</u>

1/2x + 3/2(x + 1) - 1/4 = 5

1/2x + 3/2x + 3/2 - 1/4 = 5

<u>Step 2:  Combine like terms</u>

4/2x + 6/4 - 1/4 = 5

2x + 5/4 = 5

<u>Step 3:  Subtract 5/4 from both sides</u>

2x + 5/4 - 5/4 = 5 - 5/4

2x = 3.75

<u>Step 4:  Divide both sides by 2</u>

2x / 2 = 3.75 / 2

x = 1.875

Answer:  x = 1.875

5 0
3 years ago
Someone help fastttt !!!!!!!!!!!!!
Vlada [557]

Answer I think that it is x times 1 times 100= altitude.

Step-by-step explanation:

400/2= 200

but if you do it 700/6

it doesn't make sense unless

2 x 1 =2

2 x 100+200

3 0
4 years ago
Read 2 more answers
How many tenths are there in 4/5?
Greeley [361]
4/5 would equal in decimal form as .8

so there are 8 tenths in 4/5 :)
6 0
3 years ago
Integration questions .
dlinn [17]
<h2>1)</h2>

\\\\\ \textbf{a)}\\\\~~~\displaystyle \int (6x- \sin 3x) ~ dx\\\\=6\displaystyle \int x ~ dx - \displaystyle \int \sin 3x ~ dx\\\\=6 \cdot \dfrac{x^2}2 - \dfrac 13 (- \cos 3x) +C~~~~~~~~~~~;\left[\displaystyle \int x^n~ dx = \dfrac{x^{n+1}}{n+1}+C,~~~n \neq -1\right]\\\\ =3x^2 +\dfrac{\cos 3x}3 +C~~~~~~~~~~~~~~~~~~~~;\left[\displaystyle \int \sin (mx) ~dx = -\dfrac 1m ~ (\cos mx)+C \right]\\

\textbf{b)}\\\\~~~~\displaystyle \int(3e^{-2x} +\cos (0.5 x)) dx\\\\=3\displaystyle \int e^{-2x} ~dx+ \displaystyle \int \cos(0.5 x) ~dx\\\\\\=-\dfrac 32 e^{-2x} + \dfrac 1{0.5} \sin (0.5 x) +C~~~~~~~~~~~~~~;\left[\displaystyle \int e^{mx}~dx = \dfrac 1m e^{mx} +C \right]\\\\\\=-\dfrac 32 e^{-2x} + 2 \sin(0.5 x) +C~~~~~~~~~~~~~~~~~;\left[\displaystyle \int \cos(mx)~ dx  = \dfrac 1m \sin(mx) +C\right]\\\\\\=-1.5e^{-2x} +2\sin(0.5x) +C

<h2>2)</h2>

\textbf{a)}\\\\y = \displaystyle \int \cos(x+5) ~ dx\\\\\text{Let,}\\\\~~~~~~~u = x+5\\\\\implies \dfrac{du}{dx} = 1+0~~~~~~;[\text{Differentiate both sides.}]\\\\\implies \dfrac{du}{dx} = 1\\\\\implies du = dx\\\\\text{Now,}\\\\y= \displaystyle \int \cos u ~ du\\\\~~~= \sin u +C\\\\~~~=\sin(x+5) + C

\textbf{b)}\\\\y = \displaystyle \int 2(5x-3)^4 dx\\\\\text{Let,}\\~~~~~~~~u = 5x-3\\\\\implies \dfrac{du}{dx} = 5~~~~~~~~~~;[\text{Differentiate both sides}]\\\\\implies dx = \dfrac{du}5\\\\\text{Now,}\\\\y = 2\cdot \dfrac 1  5 \displaystyle \int u^4 ~ du\\\\\\~~=\dfrac 25 \cdot \dfrac{u^{4+1}}{4+1} +C\\\\\\~~=\dfrac 25 \cdot \dfrac{u^5}5+C\\\\\\~~=\dfrac{2u^5}{25}+C\\\\\\~~=\dfrac{2(5x-3)^5}{25}+C

<h2>3)</h2>

\textbf{a)}\\\\y =  \displaystyle \int xe^{3x} dx\\\\\text{We know that,}\\\\ \displaystyle \int  (uv) ~dx = u  \displaystyle \int  v ~ dx -  \displaystyle \int \left[ \dfrac{du}{dx} \displaystyle \int ~ v ~ dx \right]~ dx\\\\\text{Let}, u =x~ \text{and}~ v=e^{3x}  .\\\\y=  \displaystyle \int xe^{3x} ~dx\\\\\\~~=  x\displaystyle \int e^{3x} ~ dx -  \displaystyle \int  \left[\dfrac{d}{dx}(x)  \displaystyle \int  e^{3x}~ dx \right]~ dx\\\\\\

  =x\displaystyle \int e^{3x}~ dx  - \displaystyle \dfrac 13 \int \left(e^{3x} \right)~ dx\\\\\\=\dfrac{xe^{3x}}3 - \dfrac 13 \cdot \dfrac{ e^{3x}}3+C\\\\\\= \dfrac{xe^{3x}}{3}- \dfrac{e^{3x}}{9}+C\\\\\\=\dfrac{3xe^{3x}}{9}- \dfrac{e^{3x}}9 + C\\\\\\= \dfrac 19e^{3x}(3x-1)+C

 

<h2 />
8 0
2 years ago
Other questions:
  • In trapezoid ABCD the lengths of the bases AD and BC are 7 and 5 respectively, and the length of diagonal AC is 6. The diagonals
    15·1 answer
  • 10p-2(3p-6)=4(5p-6)-10p
    7·1 answer
  • How many moles are in 600.g of calcium
    10·1 answer
  • Which of the following represents the graph of the equation ( y= 1/2x + 1)?
    10·2 answers
  • Help with number three!
    11·1 answer
  • The center on a target has a diameter of 5 inches. The whole target has a diameter of 25 inches. Complete the explanation for wh
    14·1 answer
  • Find the area of the figure. ( sides meet at right angles) ​
    13·2 answers
  • If cot x=v3, calculate (sin x)(cos x)-cos²x
    13·1 answer
  • MZAOB = 6x- 12°<br> mZBOC = 3x+ 30°<br> Find mZAOB:
    10·2 answers
  • Given this expression:
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!