Answer: d = 1
Step-by-step explanation:
First distribute the 7 to each term of (6 + d) = 42 + 7d = 49 now subtract 42 from both sides which = 7d = 7. Divide by 7 = 7d/7 = 7/7 = d = 1
Answer:
Voice over Internet Protocol (VoIP), also called IP telephony, is a method and group of technologies for the delivery of voice communications and multimedia sessions over Internet Protocol (IP) networks, such as the Internet. The terms Internet telephony, broadband telephony, and broadband phone service specifically refer to the provisioning of communications services (voice, fax, SMS, voice-messaging) over the Internet, rather than via the public switched telephone network (PSTN), also known as plain old telephone service (POTS).
It's 25 percent as it's Aa plus Bb which gives 4 combinations and one of them is the answer. thus 1/4 equals 25percent
![\bf \cfrac{\sqrt[4]{63}}{4\sqrt[4]{6}}\qquad \begin{cases} 63=3\cdot 3\cdot 7\\ 6=2\cdot 3 \end{cases}\implies \cfrac{\sqrt[4]{3\cdot 3\cdot 7}}{4\sqrt[4]{2\cdot 3}}\implies \cfrac{\underline{\sqrt[4]{3}}\cdot \sqrt[4]{3}\cdot \sqrt[4]{7}}{4\sqrt[4]{2}\cdot \underline{\sqrt[4]{3}}} \\\\\\ \cfrac{\sqrt[4]{3}\cdot \sqrt[4]{7}}{4\sqrt[4]{2}}\implies \cfrac{\sqrt[4]{3\cdot 7}}{4\sqrt[4]{2}}\implies \cfrac{\sqrt[4]{21}}{4\sqrt[4]{2}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B63%7D%7D%7B4%5Csqrt%5B4%5D%7B6%7D%7D%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0A63%3D3%5Ccdot%203%5Ccdot%207%5C%5C%0A6%3D2%5Ccdot%203%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%5Ccdot%203%5Ccdot%207%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5Ccdot%203%7D%7D%5Cimplies%20%5Ccfrac%7B%5Cunderline%7B%5Csqrt%5B4%5D%7B3%7D%7D%5Ccdot%20%5Csqrt%5B4%5D%7B3%7D%5Ccdot%20%5Csqrt%5B4%5D%7B7%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%5Ccdot%20%5Cunderline%7B%5Csqrt%5B4%5D%7B3%7D%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%7D%5Ccdot%20%5Csqrt%5B4%5D%7B7%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%5Ccdot%207%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D)
![\bf \textit{now, rationalizing the denominator}\\\\ \cfrac{\sqrt[4]{21}}{4\sqrt[4]{2}}\cdot \cfrac{\sqrt[4]{2^3}}{\sqrt[4]{2^3}}\implies \cfrac{\sqrt[4]{21}\cdot \sqrt[4]{8}}{4\sqrt[4]{2}\cdot \sqrt[4]{2^3}}\implies \cfrac{\sqrt[4]{21\cdot 8}}{4\sqrt[4]{2\cdot 2^3}}\implies \cfrac{\sqrt[4]{168}}{4\sqrt[4]{2^4}} \\\\\\ \cfrac{\sqrt[4]{168}}{4\cdot 2}\implies \cfrac{\sqrt[4]{168}}{8}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bnow%2C%20rationalizing%20the%20denominator%7D%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B2%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B2%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%5Ccdot%20%5Csqrt%5B4%5D%7B8%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%5Ccdot%20%5Csqrt%5B4%5D%7B2%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%5Ccdot%208%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5Ccdot%202%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5E4%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B4%5Ccdot%202%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B8%7D)
and is all you can simplify from it.
so... all we did, was rationaliize it, namely, "getting rid of the pesky radical at the bottom", we do so by simply multiplying it by something that will raise the radicand, to the same degree as the root, thus the radicand comes out.