Answer:
(1,6) & (7,0)
Step-by-step explanation:
y = -x + 7
y = -0.5(x - 3)² + 8
To solve the system, solve these two equations simultaneously
-x + 7 = -0.5(x - 3)² + 8
-x + 7 = -0.5(x² - 6x + 9) + 8
-x + 7 = -0.5x² + 3x - 4.5 + 8
0.5x² - 4x + 3.5 = 0
x² - 8x + 7 = 0
x² - 7x - x + 7 = 0
x(x - 7) - (x - 7) = 0
(x - 1)(x - 7) = 0
x = 1, 7
y = -1 + 7 = 6
y = -7 + 7 = 0
(1,6) (7,0)
Since the system has two distinct solutions, the line and the curve meet at two distinct poibts9: (1,6) & (7,0)
Answer:
<em>71.6 degrees </em>
Step-by-step explanation:
The formula for calculating the angle between two vectors is expressed as;
u.v = |u||v|cos theta
u.v = (8, 4).(9, -9)
u.v = 8(9)+4(-9)
u.v = 72-36
u.v = 36
|u| = √8²+4²
|u| = √64+16
|u| = √80
|v| = √9²+(-9)²
|v| = √81+81
|v| = √162
36 = √80*√162 cos theta
36 = √12960 cos theta
36 = 113.84 cos theta
cos theta = 36/113.84
cos theta = 36/113.84
cos theta = 0.3162
theta = arccos (0.3162)
<em>theta = 71.6 degrees </em>
<em>Hence the angle between the given vectors is 71.6 degrees </em>
0.017779534 because you just divide it
6 can only go into 6 once
Use the Quadratic formula,
x= -b +/- sqrt(b^2-4ac)
-------------------------
2a
x= 4 +/- sqrt(16+12)
----------------------
-6
x = 4+/- sqrt(28)
---------------
-6
x = 4 +/- 2*sqrt(7)
------------------
-6
x= 2(2+/- sqrt(7))
------------------
2(-3)
x= 2+/- sqrt(7)
--------------
-3