Answer:
144 km
Step-by-step explanation:
1 hour and a half hour = 90 minutes.
In 15 minutes a car travels 24 km
In 1 minute a car travels (24÷15) = 1.6 km
In 90 minutes a car travels (90×1.6)= 144 km
Ans.- 144 km
Answer:
49
Step-by-step explanation:
Answer: 2250
Step-by-step explanation:
the smallest amount of money Carlos needs is 2250 because 750 is exactly 1/3 of 2250.
Complete the table for the function y = 0.1^x
The first step: plug values from the left column into the ‘x’ spot in the formula <u>y=0.1^x</u>.
* 0.1^-2 : We can eliminate the negative exponent value by using the rule a^-1 = 1/a. Keep this rule in mind for future problems. (0.1^-2 = 1/0.1 * 0.1 = 100).
* 0.1^-1 = 1/0.1 = 10
* 0.1^0 = 1 : (Remember this rule: a^0 = 1)
* 0.1^1 = 0.1
Our list of values: 100, 10, 1, 0.1
Now, we can plug these values into your table:
![\left[\begin{array}{ccc}x&y\\2&10\\1&10\\0&1\\1&0.1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%26y%5C%5C2%2610%5C%5C1%2610%5C%5C0%261%5C%5C1%260.1%5Cend%7Barray%7D%5Cright%5D)
The points can now be graphed. I will paste a Desmos screenshot; try to see if you can find some of the indicated (x,y) values: [screenshot is attached]
I hope this helped!
The total cost is given by the equation:
C(t) = 45 + 25(h-1) where h is the number of hours worked.
We can check for each option in turn:
Option A:
Inequality 5 < x ≤ 6 means the hour is between 5 hours (not inclusive) to 6 hours (inclusive)
Let's take the number of hours = 5
C(5) = 45 + (5-1)×25 = 145
Let's take the number of hours = 6
Then substitute into C(6) = 45 + (6-1)×25 = 170
We can't take 145 because the value '5' was not inclusive.
Option B:
The inequality is 6 < x ≤ 7
We take number of hours = 6
C(6) = 25(6-1) + 45 = 170
We take number of hours = 7
Then C(7) = 25(7-1) + 45 = 195
Option C:
The inequality is 5 < x ≤ 6
Take the number of hours = 5
C(5) = 25(5-1) + 45 = 145
Take the number of hours = 6
C(6) = 25(6-1) + 45 = 170
We can't take the value 145 as '5' was not inclusive in the range, but we can take 170
Option D:
6 < x ≤ 7
25(6-1) + 45 < C(t) ≤ 25(7-1) + 45
170 < C(t) ≤ 195
Correct answer: C