What is the rule in this sequence (0,21) (1,18) (2,15) (3,12) (4,9) (5,6) (6,3) (7,0) (8,-3) (9,-6) (10,-9)
anastassius [24]
Answer:
x + 1 & y - 3
Step-by-step explanation:
Because... the x-values are going up by 1 digit each and the y-values are going down by 3 digits each.
Answer:
<em>Cathy was born in 1980 and she was 18 years old in 1998</em>
Step-by-step explanation:
<u>Equations</u>
This is a special type of equations where all the unknowns must be integers and limited to a range [0,9] because they are the digits of a number.
Let's say Cathy was born in the year x formed by the ordered digits abcd. A number expressed by its digits can be calculated as

In 1998, Cathy's age was

And it must be equal to the sum of the four digits

Rearranging

We are sure a=1, b=9 because Cathy's age is limited to having been born in the same century and millennium. Thus

Operating

If now we try some values for c we notice there is only one possible valid combination, since c and d must be integers in the range [0,9]
c=8, d=0
Thus, Cathy was born in 1980 and she was 18 years old in 1998. Note that 1+9+8+0=18
Answer:
Step-by-step explanation:
-3x + 4y = -18
8x - 4y = 28
5x = 10
x = 2
4 - y = 7
-y = 3
y = -3
(2, -3)