Answer:
Verified
Step-by-step explanation:
Let A matrix be in the form of
![\left[\begin{array}{cc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D)
Then det(A) = ad - bc
Matrix A transposed would be in the form of:
![\left[\begin{array}{cc}a&c\\b&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26c%5C%5Cb%26d%5Cend%7Barray%7D%5Cright%5D)
Where we can also calculate its determinant:
det(AT) = ad - bc = det(A)
So the determinant of the nxn matrix is the same as its transposed version for 2x2 matrices
You need to do it more out so I can see everything
Answer:
100
Step-by-step explanation:
First, you look at wether the first digit in this case is above or below a 5. Since it is, you would round up. The closest hundred to this number is 100, so that is the answer. For 3 digit numbers or higher, look at the tens place to determine the nearest hundred. Same rule applies for rounding up or down.
Hope I helped :)
Answer:
18 and 19
Step-by-step explanation: