Dannng I thought I seen this one before
If I understand the question correctly, you can have the same amount of change be two different percentages by having 4 quarters and 100 pennies.
Each quarter is 25%
Each penny is 1%
(am i explaining this right)
Graphs of y = x+- 1 and of y = x - 1 are shown in the figure below.
The intersection of the two graphs is the solution for the two equations.
Answer:
There is no solution.
Explanation:
It is clear that the two lines are parallel and will never intersect.
Note that the equation for a straight line is of the form
y = mx + b
where
m = slope,
b = y-intercept.
y = x + 1 has slope of m=1.
y = x - 1 has slope of m=1.
The two slopes are equal.
Because parallel lines do not intercept, there is no solution.
Answer:
x = 5, y = 5
Step-by-step explanation:
![{5}^{x - 3} \times {3}^{2y - 8} = 225 \\ {5}^{x - 3} \times {3}^{2y - 8} = 25 \times 9 \\ {5}^{x - 3} \times {3}^{2y - 8} = {5}^{2} \times {3}^{2} \\ equating \: like \: power \: terms \: from \: both \:\\ sides \\ {5}^{x - 3} = {5}^{2} \\ x - 3 = 2 (Bases\: are\: equal, \: so\: exponents \: \\will\: also\: be\: equal) \\ x = 3 + 2 \\ \huge \red{ \boxed{ x = 5}} \\ \\ {3}^{2y - 8} = {3}^{2} \\ 2y - 8 = 2(Bases\: are\: equal, \: so\: exponents \: \\will\: also\: be\: equal) \\ 2y = 2 + 8 \\ 2y = 10 \\ y = \frac{10}{2} \\ \huge \purple{ \boxed{y = 5}}](https://tex.z-dn.net/?f=%20%7B5%7D%5E%7Bx%20-%203%7D%20%20%5Ctimes%20%20%7B3%7D%5E%7B2y%20-%208%7D%20%20%3D%20225%20%5C%5C%20%7B5%7D%5E%7Bx%20-%203%7D%20%20%5Ctimes%20%20%7B3%7D%5E%7B2y%20-%208%7D%20%20%3D%2025%20%5Ctimes%209%20%5C%5C%20%20%7B5%7D%5E%7Bx%20-%203%7D%20%20%5Ctimes%20%20%7B3%7D%5E%7B2y%20-%208%7D%20%20%3D%20%20%7B5%7D%5E%7B2%7D%20%5Ctimes%20%20%7B3%7D%5E%7B2%7D%20%20%5C%5C%20equating%20%5C%3A%20like%20%5C%3A%20power%20%5C%3A%20terms%20%5C%3A%20from%20%5C%3A%20both%20%5C%3A%5C%5C%20sides%20%5C%5C%20%7B5%7D%5E%7Bx%20-%203%7D%20%20%3D%20%20%7B5%7D%5E%7B2%7D%20%5C%5C%20x%20-%203%20%3D%202%20%28Bases%5C%3A%20are%5C%3A%20equal%2C%20%5C%3A%20so%5C%3A%20exponents%20%5C%3A%20%5C%5Cwill%5C%3A%20also%5C%3A%20be%5C%3A%20equal%29%20%5C%5C%20x%20%3D%203%20%2B%202%3C%2Fp%3E%3Cp%3E%20%5C%5C%20%5Chuge%20%5Cred%7B%20%5Cboxed%7B%20x%20%3D%205%7D%7D%20%5C%5C%20%20%5C%5C%20%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%7B3%7D%5E%7B2y%20-%208%7D%20%20%3D%20%7B3%7D%5E%7B2%7D%20%5C%5C%202y%20-%208%20%3D%202%28Bases%5C%3A%20are%5C%3A%20equal%2C%20%5C%3A%20so%5C%3A%20exponents%20%5C%3A%20%5C%5Cwill%5C%3A%20also%5C%3A%20be%5C%3A%20equal%29%20%20%5C%5C%202y%20%3D%202%20%2B%208%20%5C%5C%202y%20%3D%2010%20%5C%5C%20y%20%3D%20%20%5Cfrac%7B10%7D%7B2%7D%20%20%5C%5C%20%5Chuge%20%5Cpurple%7B%20%5Cboxed%7By%20%3D%205%7D%7D)
Area = (5x + 4)(4x - 4)
= 20x^2 - 20x + 16x - 16
= 20x^2 - 4x - 16 Answer
Its G