Answer:
$0.80
Step-by-step explanation:
$16.40 ÷ 20.5 = 0.80
You can check your work by doing :
20.5 cm of wire × $0.80 = $16.40
Answer:
the probability that the sample mean will be larger than 1224 is 0.0082
Step-by-step explanation:
Given that:
The SAT scores have an average of 1200
with a standard deviation of 60
also; a sample of 36 scores is selected
The objective is to determine the probability that the sample mean will be larger than 1224
Assuming X to be the random variable that represents the SAT score of each student.
This implies that ;

the probability that the sample mean will be larger than 1224 will now be:






From Excel Table ; Using the formula (=NORMDIST(2.4))
P(\overline X > 1224) = 1 - 0.9918
P(\overline X > 1224) = 0.0082
Hence; the probability that the sample mean will be larger than 1224 is 0.0082
To find the average rate of change of given function f(x) on a given interval (a,b):
Find f(b)-f(a), b-a, and then divide your result for f(b)-f(a) by your result for b-a:
f(b) - f(a)
------------
b-a
Here your function is f(x) = x^2 - 2x + 3. Substituting b=5 and a=-2,
f(5) = 5^2 -2(5)+3 =? and f(-2) = (-2)^2 - 2(-2) + 3 = ?
Calculate f(5) - [ f(-2) ]
------------------ using your results, above.
5 - [-2]
Your answer to this, if done correctly, is the "average rate of change of the function f(x) = x^2+2x+3 on the interval [-2,5]."