Hello here is a solution:
Answer:
y = x*sqrt(Cx - 1)
Step-by-step explanation:
Given:
dy / dx = (x^2 + 5y^2) / 2xy
Find:
Solve the given ODE by using appropriate substitution.
Solution:
- Rewrite the given ODE:
dy/dx = 0.5(x/y) + 2.5(y/x)
- use substitution y = x*v(x)
dy/dx = v + x*dv/dx
- Combine the two equations:
v + x*dv/dx = 0.5*(1/v) + 2.5*v
x*dv/dx = 0.5*(1/v) + 1.5*v
x*dv/dx = (v^2 + 1) / 2v
-Separate variables:
(2v.dv / (v^2 + 1) = dx / x
- Integrate both sides:
Ln (v^2 + 1) = Ln(x) + C
v^2 + 1 = Cx
v = sqrt(Cx - 1)
- Back substitution:
(y/x) = sqrt(Cx - 1)
y = x*sqrt(Cx - 1)
Answer:
Step-by-step explanation:
Trace a linha de 8cm, daí você vai dividir ela no meio, ou seja, no 4. Aí é só contar 2 cm para cada lado, que vai ser o 1, as pontas vão ser o 2. Tendeu? Daí é só marcar os pontos no -3/7(~-2,3), 1,6, 7/5(1,4), -1 e 0
ummmmmmmmmmmmmmmmmmmmmmmmmm?mmmmmmmmmmmmmmmm?mmmmmmmmmmmmm withhhhhhhhhhhhhhhhh whatttttttttttttttttt
Answer:
a. 1
Step-by-step explanation:
Replace 1 with x
2 ( 1 + 1 ) = 1 + 3
2 ( 2 ) = 1 + 3
4 = 1 + 3
4 = 4