Answer:
There is an asymptote at x = 0
There is an asymptote at y = 23
Step-by-step explanation:
Given the function:
(23x+14)/x
Vertical asymptote is gotten by equating the denominator to zero
Since the denominator is x, hence the vertical asymptote is at x = 0. This shows that there is an asymptote at x = 0
Also for the horizontal asymptote, we will take the ratio of the coefficient of the variables in the numerator and denominator
Coefficient of x at the numerator = 23
Coefficient of x at the denominator = 1
Ratio = 23/1 = 23
This means that there is an asymptote at y = 23
Answer:
ok....let me try .....
<h2>..ok bro....sorry don't be angry
<em><u>b</u></em><em><u>j</u></em><em><u>h</u></em><em><u>u</u></em><em><u>j</u></em><em><u>j</u></em></h2>
When
|a|=b
assume
a=b and -a=b
so
4+|7-m|=5
minus 4 from both sides
|7-m|=1
assume
7-m=1 and
-(7-m)=1
7-m=1
minus 7 both sidees
-m=-6
times -1 both sides
m=6
-(7-m)=1
distribute
-7+m=1
add 7 to both sides
m=8
m=6 and 8
The complete question is
Find the volume of each sphere for the given radius. <span>Round to the nearest tenth
we know that
[volume of a sphere]=(4/3)*pi*r</span>³
case 1) r=40 mm
[volume of a sphere]=(4/3)*pi*40³------> 267946.66 mm³-----> 267946.7 mm³
case 2) r=22 in
[volume of a sphere]=(4/3)*pi*22³------> 44579.63 in³----> 44579.6 in³
case 3) r=7 cm
[volume of a sphere]=(4/3)*pi*7³------> 1436.03 cm³----> 1436 cm³
case 4) r=34 mm
[volume of a sphere]=(4/3)*pi*34³------> 164552.74 mm³----> 164552.7 mm³
case 5) r=48 mm
[volume of a sphere]=(4/3)*pi*48³------> 463011.83 mm³----> 463011.8 mm³
case 6) r=9 in
[volume of a sphere]=(4/3)*pi*9³------> 3052.08 in³----> 3052 in³
case 7) r=6.7 ft
[volume of a sphere]=(4/3)*pi*6.7³------> 1259.19 ft³-----> 1259.2 ft³
case 8) r=12 mm
[volume of a sphere]=(4/3)*pi*12³------>7234.56 mm³-----> 7234.6 mm³