<u>Given</u>:
The given figure shows the intersection of the two lines.
The angles formed by the intersection of the two lines are (3x - 8)° and (2x + 12)°
We need to determine the equation to solve for x and to find the value of x.
<u>Equation to solve for x:</u>
Since, the two angles (3x - 8)° and (2x + 12)° are vertically opposite angles and the vertical angles are always equal.
Hence, we have;

Thus, the equation to solve for x is 
<u>Value of x:</u>
The value of x can be determined by solving the equation 
Thus, we have;


Thus, the value of x is 20.
Answer: Parallel: y=-2/7x-2 1/7 Perpendicular: y=7/2x+13
Step-by-step explanation:
2x+7y=14
Subtract 2x from both sides.
7y=-2x+14
Divide both sides by 7 to isolate y.
y=-2/7x+2
Parallel:
Plug in x and y with same slope as the original.
-1=-2/7(-4)+b
Solve for b:
-1=8/7+b
-2 1/7=b
y=-2/7x-2 1/7
Perpendicular:
Plug in x and y with the negative inverse of the original slope.
-1=7/2(-4)+b
Solve for b.
-1=-28/2+b
-1=-14+b
13=b
y=7/2x+13
Isolate k by dividing both sides by 8
8k=4/9
k=4/72
Reduce if possible
4/72 -> 1/18
8would be the permiter in my state
Answer:
T=5
Step-by-step explanation:
5 -3 = 10/t
2 =10/t
2t = 10
T = 5