1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crank
3 years ago
13

A large corporation starts at time t = 0 to invest part of its receipts continuously at a rate of P dollars per year in a fund f

or future corporate expansion. Assume that the fund earns r percent interest per year compounded continuously. So, the rate of growth of the amount A in the fund is given by dA/dt = rA + P where A = O when t = 0. Solve this differential equation for A as a function of t.
Mathematics
1 answer:
Andrews [41]3 years ago
4 0

Answer:

A = \frac{P}{r}\left( e^{rt} -1 \right)

Step-by-step explanation:

This is <em>a separable differential equation</em>. Rearranging terms in the equation gives

                                                \frac{dA}{rA+P} = dt

Integration on both sides gives

                                            \int \frac{dA}{rA+P} = \int  dt

where c is a constant of integration.

The steps for solving the integral on the right hand side are presented below.

                               \int \frac{dA}{rA+P} = \begin{vmatrix} rA+P = m \implies rdA = dm\end{vmatrix} \\\\\phantom{\int \frac{dA}{rA+P} } = \int \frac{1}{m} \frac{1}{r} \, dm \\\\\phantom{\int \frac{dA}{rA+P} } = \frac{1}{r} \int \frac{1}{m} \, dm\\\\\phantom{\int \frac{dA}{rA+P} } = \frac{1}{r} \ln |m| + c \\\\&\phantom{\int \frac{dA}{rA+P} } = \frac{1}{r} \ln |rA+P| +c

Therefore,

                                        \frac{1}{r} \ln |rA+P| = t+c

Multiply both sides by r.

                               \ln |rA+P| = rt+c_1, \quad c_1 := rc

By taking exponents, we obtain

      e^{\ln |rA+P|} = e^{rt+c_1} \implies  |rA+P| = e^{rt} \cdot e^{c_1} rA+P = Ce^{rt}, \quad C:= \pm e^{c_1}

Isolate A.

                 rA+P = Ce^{rt} \implies rA = Ce^{rt} - P \implies A = \frac{C}{r}e^{rt} - \frac{P}{r}

Since A = 0  when t=0, we obtain an initial condition A(0) = 0.

We can use it to find the numeric value of the constant c.

Substituting 0 for A and t in the equation gives

                         0 = \frac{C}{r}e^{0} - \frac{P}{r} \implies \frac{P}{r} = \frac{C}{r} \implies C=P

Therefore, the solution of the given differential equation is

                                   A = \frac{P}{r}e^{rt} - \frac{P}{r} = \frac{P}{r}\left( e^{rt} -1 \right)

You might be interested in
Plz help I don’t know the answer very important question
Igoryamba

Answer

D.26

Step-by-step explanation:

4 0
3 years ago
Describe the translation of the function from the parent function f(x) = x².
kkurt [141]
\bf \qquad \qquad \qquad \qquad \textit{function transformations}&#10;\\ \quad \\\\&#10;&#10;\begin{array}{rllll} &#10;% left side templates&#10;f(x)=&{{  A}}({{  B}}x+{{  C}})+{{  D}}&#10;\\ \quad \\&#10;y=&{{  A}}({{  B}}x+{{  C}})+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}}\sqrt{{{  B}}x+{{  C}}}+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}}(\mathbb{R})^{{{  B}}x+{{  C}}}+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}} sin\left({{ B }}x+{{  C}}  \right)+{{  D}}&#10;\end{array}

\bf \begin{array}{llll}&#10;% right side info&#10;\bullet \textit{ stretches or shrinks horizontally by  } {{  A}}\cdot {{  B}}\\\\&#10;\bullet \textit{ flips it upside-down if }{{  A}}\textit{ is negative}&#10;\\\\&#10;&#10;\end{array}\\

\bf \begin{array}{llll}&#10;\bullet \textit{ horizontal shift by }\frac{{{  C}}}{{{  B}}}\\&#10;\qquad  if\ \frac{{{  C}}}{{{  B}}}\textit{ is negative, to the right}\\\\&#10;\qquad  if\ \frac{{{  C}}}{{{  B}}}\textit{ is positive, to the left}\\\\&#10;\bullet \textit{ vertical shift by }{{  D}}\\&#10;\qquad if\ {{  D}}\textit{ is negative, downwards}\\\\&#10;\qquad if\ {{  D}}\textit{ is positive, upwards}\\\\&#10;\bullet \textit{ period of }\frac{2\pi }{{{  B}}}&#10;\end{array}&#10;

now, notice the template above... now let's see your function \bf y=x^2+4\implies &#10;\begin{array}{llllll}&#10;y=&1(&1x&+&0)^2+&4\\&#10;&A&B&&C&D&#10;\end{array}

so.. what do you think was the shift then?
8 0
3 years ago
Suppose that the Celsius temperature at the point (x, y) in the xy-plane is T(x, y) = x sin 2y and that distance in the xy-plane
liraira [26]

Missing information:

How fast is the temperature experienced by the particle changing in degrees Celsius per meter at the point

P = (\frac{1}{2}, \frac{\sqrt 3}{2})

Answer:

Rate = 0.935042^\circ /cm

Step-by-step explanation:

Given

P = (\frac{1}{2}, \frac{\sqrt 3}{2})

T(x,y) =x\sin2y

r = 1m

v = 2m/s

Express the given point P as a unit tangent vector:

P = (\frac{1}{2}, \frac{\sqrt 3}{2})

u = \frac{\sqrt 3}{2}i - \frac{1}{2}j

Next, find the gradient of P and T using: \triangle T = \nabla T * u

Where

\nabla T|_{(\frac{1}{2}, \frac{\sqrt 3}{2})}  = (sin \sqrt 3)i + (cos \sqrt 3)j

So: the gradient becomes:

\triangle T = \nabla T * u

\triangle T = [(sin \sqrt 3)i + (cos \sqrt 3)j] *  [\frac{\sqrt 3}{2}i - \frac{1}{2}j]

By vector multiplication, we have:

\triangle T = (sin \sqrt 3)*  \frac{\sqrt 3}{2} - (cos \sqrt 3)  \frac{1}{2}

\triangle T = 0.9870 * 0.8660 - (-0.1606 * 0.5)

\triangle T = 0.9870 * 0.8660 +0.1606 * 0.5

\triangle T = 0.935042

Hence, the rate is:

Rate = \triangle T = 0.935042^\circ /cm

3 0
3 years ago
All sacks of sugar have the same weight. All sacks of flour also have the same weight, but not necessarily the same as the weigh
maksim [4K]
Sugar: x pounds
flour: 2x + 5 pounds
2x + 3(2x + 5) = 40
2x + 6x + 15 = 40
8x = 25
x = 3.125
-> a sack of flour is 3.125 + 5 = 8.125 pounds
I hope it‘s coorect
4 0
3 years ago
Katy buys 4 dvds every 2 weeks. How many will she buy in 12 weeks?
Tom [10]
She buys 24 dvds in 12 weeks.
3 0
3 years ago
Read 2 more answers
Other questions:
  • 198 is 33% of what number?<br> Please show work<br> Can Robtobey help me and others :) ...?
    6·1 answer
  • Choose the constant that could be multiplied by each equation to create a system of equivalent equations with opposite terms.
    5·2 answers
  • Please Help!
    12·1 answer
  • The table shows the educational attainment of the population of​ Mars, ages 25 and​ over, expressed in millions. Find the probab
    10·1 answer
  • Straight line depreciation. A car has an initial value of 29,564 and depreciates 532 a year . V represents value of car after t
    6·1 answer
  • 4sqrt(8)-6sqrt(18) solve the equations
    7·1 answer
  • Can someone please help me with this domain, range and function ws??
    7·1 answer
  • Cho hai dường thẳng MN và PQ cắt nhau tạo thành bốn góc, trong dó tổng ba trong bốn góc có số đo là 290 dộ . Tính số do của các
    11·1 answer
  • Help me pls! PLS PLS PLS I NEED IT<br><br>20 points<br>options are x, x^9, x^4, and x^6
    9·1 answer
  • An exam is made of two papers that score differently.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!