Answer:
Dimensions of printed area
w = 8.95 cm
h = 13.44 cm
A(max) = 120.28 cm²
Step-by-step explanation:
Lets call " x " and "y" dimensions of the poster area ( wide and height respectively) . Then
A(t) = 180 cm² = x*y y = 180/ x
And the dimensions of printed area is
A(p) = ( x - 2 ) * ( y - 3 ) then as y = 180/x we make A function of x only so
A(x) = ( x - 2 ) * ( 180/x - 3 ) ⇒ A(x) = 180 - 3x - 360/x +6
A(x) = - 3x - 360 /x + 186
Taking derivatives on both sides of the equation we get:
A´(x) = -3 + 360/ x²
A´(x) = 0 -3 + 360/ x² = 0 -3x² + 360 = 0
x² = 120 ⇒ x = √120 x = 10.95 cm
And y = 180 / 10.95 ⇒ y = 16.44 cm
Then x and y are the dimensions of the poster then according to problem statement
w of printed area is x - 2 = 10.95 - 2 = 8.95 cm
and h of printed area is y - 3 = 16.44 - 3 = 13.44 cm
And the largest printed area is w * h = ( 8.95)*(13.44)
A(max) = 120.28 cm²
The ratio of the length to the width is

.
The ratio of the sides will be the same for the scale and actual figures.

I took the L/W of the scale figure
and set it equal to the L/W of the actual figure.
Now we can solve for the unknown width.
Cross-multiplication gives us this,

Divide by 2.4 and simplify,

Hope that helps! :)
There are 30 players in the tournament
If x^2+bx+16 has at least one real root, then the equation x^2+bx+16=0 has at least one solution. The discriminant of a quadratic equation is b^2-4ac and it determines the nature of the roots. If the discriminant is zero, there is exactly one distinct real root. If the discriminant is positive, there are exactly two roots. The discriminant of <span>x^2+bx+16=0 is b^2-4(1)(16). The inequality here gives the values of b where the discriminant will be positive or zero:
b^2-4(1)(16) ≥ 0
</span><span>b^2-64 ≥ 0
(b+8)(b-8) </span><span>≥ 0
The answer is that all possible values of b are in the interval (-inf, -8]∪[8,inf) because those are the intervals where </span>(b+8)(b-8) is positive.