1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fiasKO [112]
3 years ago
5

Could someone please help me with this ! And also show work

Mathematics
2 answers:
makvit [3.9K]3 years ago
7 0

Answer: C. K= 2.5

Step-by-step explanation:

Isolate the variable by dividing each side by factors that don't contain the variable.

shepuryov [24]3 years ago
3 0

Answer:

\Huge\boxed{k=2.5}

Step-by-step explanation:

Given -2.1k + 13 + 6.5k = 24 we need to isolate the variable using inverse operations

step 1 combine any like terms

sometimes there are not like terms but in this case there are. When there are like terms (must be on the same side of the = ) you add them together

-2.1k + 6.5k = 4.4k

now we have

4.4k + 13 = 24

Now we want to get rid of the 13

To do so we subtract 13 from each side

13 - 13 cancels out

24 - 13 = 11

now we have 4.4k=11

now we want to get rid of the 4.4

To do so we divide each side by 4.4

4.4k/4=k

11/4.4=2.5

we're left with k - 2.5

You might be interested in
A wave with a frequency of 60 hertz would generate 60 wave crests every
V125BC [204]
Answer is every second
5 0
3 years ago
Principal Leroy Jenkins wants to build a circular garden in the school courtyard. The garden will have a diameter of 20 feet. Pr
Dovator [93]

Answer:

62.8ft

Step-by-step explanation:

we are to determine the circumference of the garden

circumference = πD

= 3.14 x 20 = 62.8 ft

8 0
3 years ago
X/2-1/5=x/3+1/4<br>solve this equation ​
Alekssandra [29.7K]

Answer:

x=\frac{27}{10}

Step-by-step explanation:

\frac{x}{2}-\frac{1}{5}=\frac{x}{3}+\frac{1}{4}

\frac{x}{2}-\frac{1}{5}-\frac{x}{3}=\frac{x}{3}+\frac{1}{4}-\frac{x}{3}

-\frac{1}{5}+\frac{x}{6}=\frac{1}{4}

-\frac{1}{5}+\frac{x}{6}+\frac{1}{5}=\frac{1}{4}+\frac{1}{5}

\frac{x}{6}=\frac{9}{20}

\frac{6x}{6}=\frac{9\times \:6}{20}

x=\frac{27}{10}

3 0
3 years ago
Read 2 more answers
Felipe picked a pumpkin that weighed three times the weight of Meg's pumpkin Meg's pumpkin with half the weight of Ryan's pump R
Xelga [282]

Answer:

21 lb

Step-by-step explanation:

Divide the amount of Ryan's pumpkin by 2 then multiply it by 3. Ryan's pumpkin weighs 14 lb divided by 2 is 7 then 7 multiplied by 3 is 21.

6 0
3 years ago
Help ASAP!!!!!!!!!!!! Show your work!!!!!!!!!!!
Mariulka [41]

Answer:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

Step-by-step explanation:

Solve for x:

5 x^4 - 7 x^3 - 5 x^2 + 5 x + 1 = 0

Eliminate the cubic term by substituting y = x - 7/20:

1 + 5 (y + 7/20) - 5 (y + 7/20)^2 - 7 (y + 7/20)^3 + 5 (y + 7/20)^4 = 0

Expand out terms of the left hand side:

5 y^4 - (347 y^2)/40 - (43 y)/200 + 61197/32000 = 0

Divide both sides by 5:

y^4 - (347 y^2)/200 - (43 y)/1000 + 61197/160000 = 0

Add (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000 to both sides:

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (y^2 + sqrt(61197)/400)^2:

(y^2 + sqrt(61197)/400)^2 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

Add 2 (y^2 + sqrt(61197)/400) λ + λ^2 to both sides:

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (y^2 + sqrt(61197)/400 + λ)^2:

(y^2 + sqrt(61197)/400 + λ)^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (2 λ + 347/200 + sqrt(61197)/200) y^2 + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2:

(y^2 + sqrt(61197)/400 + λ)^2 = y^2 (2 λ + 347/200 + sqrt(61197)/200) + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2 + (4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000)/(4 (2 λ + 347/200 + sqrt(61197)/200))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000 = (8000000 λ^3 + 60000 sqrt(61197) λ^2 + 6940000 λ^2 + 34700 sqrt(61197) λ + 6119700 λ - 1849)/1000000 = 0.

Thus the root λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2

Take the square root of both sides:

y^2 + sqrt(61197)/400 + λ = y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)) or y^2 + sqrt(61197)/400 + λ = -y sqrt(2 λ + 347/200 + sqrt(61197)/200) - 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200))

Solve using the quadratic formula:

y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) + sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197))) - sqrt(2) sqrt(400 λ + 347 + sqrt(61197))) or y = 1/40 (-sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) where λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3))

Substitute λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) and approximate:

y = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x - 7/20 = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x - 7/20 = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x - 7/20 = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or x = 0.841952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x - 7/20 = 1.23204

Add 7/20 to both sides:

Answer: x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

3 0
3 years ago
Other questions:
  • How can you rewrite the expression (8-5i)^2 in the form of a +bi
    5·1 answer
  • How do write 412.638 using expanded form using decimals
    9·1 answer
  • Anybody know the answer?
    5·1 answer
  • Which of the following is the absolute value parent function
    6·2 answers
  • 2/3 of the product of 3/8 and 16
    11·2 answers
  • Which number appears farther to the right on the number line?
    9·2 answers
  • A. Each day, your teacher randomly calls on 5 students in your class of 30. What is the
    11·1 answer
  • Please help me I can’t get this wrong
    5·1 answer
  • Existe un número, tal que, el doble del cuadrado del número es 12 unidades mayor, que el quíntuplo (5) del número mismo, ¿cuál e
    15·1 answer
  • The volume of a cylinder is 63pi cubic inches. Its height is 7 inches. Find the radius of the ball. Round your
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!