<span><span> y2(q-4)-c(q-4)</span> </span>Final result :<span> (q - 4) • (y2 - c)
</span>
Step by step solution :<span>Step 1 :</span><span>Equation at the end of step 1 :</span><span><span> ((y2) • (q - 4)) - c • (q - 4)
</span><span> Step 2 :</span></span><span>Equation at the end of step 2 :</span><span> y2 • (q - 4) - c • (q - 4)
</span><span>Step 3 :</span>Pulling out like terms :
<span> 3.1 </span> Pull out q-4
After pulling out, we are left with :
(q-4) • (<span> y2</span> * 1 +( c * (-1) ))
Trying to factor as a Difference of Squares :
<span> 3.2 </span> Factoring: <span> y2-c</span>
Theory : A difference of two perfect squares, <span> A2 - B2 </span>can be factored into <span> (A+B) • (A-B)
</span>Proof :<span> (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 <span>- AB + AB </span>- B2 =
<span> A2 - B2</span>
</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication.
Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.
Check : <span> y2 </span>is the square of <span> y1 </span>
Check :<span> <span> c1 </span> is not a square !!
</span>Ruling : Binomial can not be factored as the difference of two perfect squares
Final result :<span> (q - 4) • (y2 - c)
</span><span>
</span>
Answer:
C (X,Y)->(X-4,×-5) I would say bro
I can’t see it that well sorry
Answer: The number of first-year residents she must survey to be 95% confident= 263
Step-by-step explanation:
When population standard deviation (
) is known and margin of error(E) is given, then the minimum sample size (n) is given by :-
, z* = Two-tailed critical value for the given confidence interval.
For 95% confidence level , z* = 1.96
As,
= 8.265, E = 1
So, ![n= (\dfrac{1.96\times8.265}{1})^2 =(16.1994)^2\\\\= 262.42056036\approx263\ \ \ [\text{Rounded to the next integer}]](https://tex.z-dn.net/?f=n%3D%20%28%5Cdfrac%7B1.96%5Ctimes8.265%7D%7B1%7D%29%5E2%20%3D%2816.1994%29%5E2%5C%5C%5C%5C%3D%20262.42056036%5Capprox263%5C%20%5C%20%5C%20%5B%5Ctext%7BRounded%20to%20the%20next%20integer%7D%5D)
Hence, the number of first-year residents she must survey to be 95% confident= 263