so we have three points, A, B and C, if indeed AC is the diameter of the circle, then half the distance of AC is its radius, and the midpoint of AC is the center of the circle, morever, since B is also on the circle, the distance from B to the center must be the same radius distance.
in short, half the distance of AC must be equals to the distance of B to the midpoint of AC, if indeed AC is the diameter.

now, let's check the distance from say A to the center, and check the distance of B to the center, if it's indeed the center, they'll be the same and thus AC its diameter.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ A(\stackrel{x_1}{7}~,~\stackrel{y_1}{4})\qquad M(\stackrel{x_2}{\frac{19}{2}}~,~\stackrel{y_2}{\frac{7}{2}})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ AM=\sqrt{\left( \frac{19}{2}-7 \right)^2+\left( \frac{7}{2}-4 \right)^2} \\\\\\ AM=\sqrt{\left( \frac{5}{2}\right)^2+\left( -\frac{1}{2} \right)^2}\implies \boxed{AM\approx 2.549509756796392} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_1%7D%7B7%7D~%2C~%5Cstackrel%7By_1%7D%7B4%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B%5Cfrac%7B19%7D%7B2%7D%7D~%2C~%5Cstackrel%7By_2%7D%7B%5Cfrac%7B7%7D%7B2%7D%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AM%3D%5Csqrt%7B%5Cleft%28%20%5Cfrac%7B19%7D%7B2%7D-7%20%5Cright%29%5E2%2B%5Cleft%28%20%5Cfrac%7B7%7D%7B2%7D-4%20%5Cright%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AM%3D%5Csqrt%7B%5Cleft%28%20%5Cfrac%7B5%7D%7B2%7D%5Cright%29%5E2%2B%5Cleft%28%20-%5Cfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%7D%5Cimplies%20%5Cboxed%7BAM%5Capprox%202.549509756796392%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
congruent
Step-by-step explanation:
If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular. When two adjacent angles form a linear pair, their non-shared sides form a straight line (m).
i'm not sure tho
Answer:
First parabola's vertex is (-2,2), which is a minimum.
Second parabola's vertex is (3,2), which is a maximum.
Step-by-step explanation:
Simply, a vertex of a quadratic is a graph's turning point.
The maximum and minimum can be identified by seeing if the graph curves up or down.
Maximum occurs when your graph is facing down.
Minimum occurs when your graph is facing up.
It is 18.5 because half of 370 is 185 and 2/5 of that is 18.5