You’ll need a total of 86x6= or 516 total points to meet your average of at least 86. Now subtract out your current scores: 516- 75-93-90-82-85 = 91. You’ll need 91 to meet the 516 total requirement.
So Jenson has 256 beads + 67 beads = 323 beads - 157 beads for the <span>necklaces = </span> 166 beads divided by 8 beads per bracelet = 20 bracelets with the remainder of 6 beads.
Answer:
x=-2
Step-by-step explanation:
6(x+1)=-2(3x+9)
Distribute the 6.
6x+6=-2(3x+9)
Distribute the -2.
6x+6=-6x-18
Move the variable to the left-hand side and change the sign.
6x+6+6x=-18
Collect like terms
12x=-18-6
Calculate the difference.
12x=-24
Divide both sides by 12.
x=-2
Hope this helps :)
Answer:
8 more widgets
Step-by-step explanation:
<u>Monday:</u>
t hours work AT w widgets per hour
So,
total number of widgets = wt
<u>Tuesday:</u>
2 fewer hours than monday, so
hours worked = t - 2
Per hour widget production is 4 more than Monday so:
per hour widget = w + 4
Total number of widgets = 
Monday he produced more, so amount more is:
![wt-[wt+4t-2w-8]\\wt-wt-4t+2w+8\\-4t+2w+8](https://tex.z-dn.net/?f=wt-%5Bwt%2B4t-2w-8%5D%5C%5Cwt-wt-4t%2B2w%2B8%5C%5C-4t%2B2w%2B8)
Given, w = 2t, we have:

Thus,
8 more widgets were produced
Check the picture below.
clearly the angle at vertex C isn't the right angle, so let's check if AB ⟂ BC.
![\bf A(\stackrel{x_1}{-4}~,~\stackrel{y_1}{3})\qquad B(\stackrel{x_2}{0}~,~\stackrel{y_2}{-1}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-1-3}{0-(-4)}\implies \cfrac{-4}{0+4}\implies \cfrac{-4}{4}\implies -1 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20A%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20B%28%5Cstackrel%7Bx_2%7D%7B0%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29%20%5C%5C%5C%5C%5C%5C%20slope%20%3D%20m%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%7B%20y_2-%20y_1%7D%7D%7B%5Cstackrel%7Brun%7D%7B%20x_2-%20x_1%7D%7D%5Cimplies%20%5Ccfrac%7B-1-3%7D%7B0-%28-4%29%7D%5Cimplies%20%5Ccfrac%7B-4%7D%7B0%2B4%7D%5Cimplies%20%5Ccfrac%7B-4%7D%7B4%7D%5Cimplies%20-1%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf B(\stackrel{x_1}{0}~,~\stackrel{y_1}{-1})\qquad C(\stackrel{x_2}{2}~,~\stackrel{y_2}{1}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{1-(-1)}{2-0}\implies \cfrac{1+1}{2}\implies \cfrac{2}{2}\implies 1 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20B%28%5Cstackrel%7Bx_1%7D%7B0%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%5Cqquad%20C%28%5Cstackrel%7Bx_2%7D%7B2%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%20%5C%5C%5C%5C%5C%5C%20slope%20%3D%20m%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%7B%20y_2-%20y_1%7D%7D%7B%5Cstackrel%7Brun%7D%7B%20x_2-%20x_1%7D%7D%5Cimplies%20%5Ccfrac%7B1-%28-1%29%7D%7B2-0%7D%5Cimplies%20%5Ccfrac%7B1%2B1%7D%7B2%7D%5Cimplies%20%5Ccfrac%7B2%7D%7B2%7D%5Cimplies%201%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{-1\implies \cfrac{-1}{1}}\qquad \qquad \qquad \stackrel{reciprocal}{\cfrac{1}{-1}}\qquad \stackrel{negative~reciprocal}{+\cfrac{1}{1}\implies 1}} \\\\[-0.35em] ~\dotfill\\\\ ~\hfill \stackrel{\textit{so is a right triangle}}{AB\perp BC}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bperpendicular%20lines%20have%20%5Cunderline%7Bnegative%20reciprocal%7D%20slopes%7D%7D%20%7B%5Cstackrel%7Bslope%7D%7B-1%5Cimplies%20%5Ccfrac%7B-1%7D%7B1%7D%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7Breciprocal%7D%7B%5Ccfrac%7B1%7D%7B-1%7D%7D%5Cqquad%20%5Cstackrel%7Bnegative~reciprocal%7D%7B%2B%5Ccfrac%7B1%7D%7B1%7D%5Cimplies%201%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bso%20is%20a%20right%20triangle%7D%7D%7BAB%5Cperp%20BC%7D~%5Chfill)