Answer:
600 L of 30% proof and 400 L of 80% proof is needed
Step-by-step explanation:
Let the amount of 30% smell proof be x while that of 80% smell proof is y
Then;
x + y = 1000 •••••(i)
Also;
30% of x + 80% of y = 50% of 1000
0.3x + 0.8y = 500 •••••(ii)
From i, x = 1000 - y
Put this into ii
0.3(1000-y) + 0.8y = 500
300 - 0.3y + 0.8y = 500
0.5y = 500-300
0.5y = 200
y = 200/0.5
y = 400 L
But x = 1000 - y
x = 1000 - 400 = 600 L
The sum of all the even integers between 99 and 301 is 20200
To find the sum of even integers between 99 and 301, we will use the arithmetic progressions(AP). The even numbers can be considered as an AP with common difference 2.
In this case, the first even integer will be 100 and the last even integer will be 300.
nth term of the AP = first term + (n-1) x common difference
⇒ 300 = 100 + (n-1) x 2
Therefore, n = (200 + 2 )/2 = 101
That is, there are 101 even integers between 99 and 301.
Sum of the 'n' terms in an AP = n/2 ( first term + last term)
= 101/2 (300+100)
= 20200
Thus sum of all the even integers between 99 and 301 = 20200
Learn more about arithmetic progressions at brainly.com/question/24592110
#SPJ4
Answer:
Step-by-step explanation:
log(7)6+log(7)2^3
log(7)6+log(7)8
log(7)(8*6)
log(7)48 = > D is the correct answer.
Answer:
box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35
Step-by-step explanation:
The scores of the students represented on the dot plot are:
1 dot => 24
3 dots => 26, 26, 26
3 dots => 27, 27, 27
5 dots => 28, 28, 28, 28, 28
3 dots => 30, 30, 30
3 dots => 32, 32, 32
1 dot => 35
Quickly, we can ascertain 3 values from these data points of which we can use to find out which box plot represents the dot plot data.
The minimum score = 24
The maximum score = 35
The median score is the 10th value, which is the middle value of the data point = 28
Therefore, we can conclude that: "box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35".
We want to create a linear equation to model the given situation.
A) c(r) = $6.00 + $1.50*r
B) 19 rides.
We know that the carnival charges $6.00 for entry plus $1.50 for each ride.
A) With the given information we can see that if you ride for r rides, then the cost equation will be:
c(r) = $6.00 + $1.50*r
Where c(r) is the cost for going to the carnival and doing r rides.
B) If you have $35.00, then we can solve:
c(r) = $35.00 = $6.00 + $1.50*r
Now we can solve the equation for r.
$35.00 = $6.00 + $1.50*r
$35.00 - $6.00 = $1.50*r
$29.00 = $1.50*r
$29.00/$1.50 = r = 19.33
Rounding to the next whole number we get: r = 19
This means that with $35.00, Dennis could go to 19 rides.
If you want to learn more, you can read:
brainly.com/question/13738061