The population is tripling each minute
Answer:
0.0087 probability that a freshman non-Statistics major and then a junior Statistics major are chosen at random
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
What is the probability that a freshman non-Statistics major and then a junior Statistics major are chosen at random?
There are 5 freshman non-Statistics majors out of 102 students.
Then, there will be 18 junior statistics majors out of 101 students(1 will have already been chosen). So
0.0087 probability that a freshman non-Statistics major and then a junior Statistics major are chosen at random
Given : f(x)= 3|x-2| -5
f(x) is translated 3 units down and 4 units to the left
If any function is translated down then we subtract the units at the end
If any function is translated left then we add the units with x inside the absolute sign
f(x)= 3|x-2| -5
f(x) is translated 3 units down
subtract 3 at the end, so f(x) becomes
f(x)= 3|x-2| -5 -3
f(x) is translated 4 units to the left
Add 4 with x inside the absolute sign, f(x) becomes
f(x)= 3|x-2 + 4| -5 -3
We simplify it and replace f(x) by g(x)
g(x) = 3|x + 2| - 8
a= 3, h = -2 , k = -8
Let the hours Kade worked = X
Theo would be X - 3 ( 3 less than Kade).
Now you have:
X + X -3 = 27
Combine like terms:
2x - 3 = 27
Add 3 to each side:
2x = 30
Divide both sides by 2:
x = 15
Kade worked 15 hours.
Theo worked 12 hours.