-4 is also a geometric mean
if we consider a(first element in series)=1 and r(common ratio)=-4 then the series would be
1,-4,16,-64,256,…..,a(-4)^(n-1 )
where n is nth term
from this -4 would be the geometric mean if we consider -4 as common ratio .
If we consider 4 as common ratio then geometric mean should be 4
so you should mention whether common ratio >0 or not (r>0 or not) .
[without ‘r’ value you can’t solve the question but in general most of the teachers will consider r>0.]
So, -4 won’t be geometric mean of 1 & 16
Answer:
b. As the sample size â increases, the variance of decreases. â So, the distribution of becomes highly concentrated around.
Step-by-step explanation:
Let : Yi,.... Yn are = i.i.d are random variables. The probability density of the distribution varies along with the sample size. When the sample size changes, the probability density of
also changes.
The probability distribution may be defined as the statistical expression which defines the likelihood of any outcome for the discrete random variable and it can be opposed to the continuous random variable.
In the context, when the size of the sample of the distribution size increases, it causes a decrease in the variance and so the distribution becomes highly concentrated around.
A. This expression has 4 terms
B. The constants are -5, 3, 72 and 10
C. The third term is 72
D. The coefficient is y
First you would need to find out how many 9 payments of 58$ would be and that is 522. Then you would need to subtract the 522 and the 480 and your answer would be 42$ so the interest would be 42$