Answer:

Step-by-step explanation:

![x^2+3x=10^{1\frac{1}{2}}\\\\x^2+3x=10^{1+\frac{1}{2}}\qquad\text{use}\ a^n\cdot a^m=a^{n+m}\\\\x^2+3x=10\cdot10^\frac{1}{2}\qquad\text{use}\ \sqrt[n]{a}=a^\frac{1}{n}\\\\x^2+3x=10\sqrt{10}\qquad\text{subtract}\ 10\sqrt{10}\ \text{from both sides}\\\\x^2+3x-10\sqrt{10}=0\\\\\text{Use the quadratic formula}\\\\ax^2+bx+c=0\\\\x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\a=1,\ b=3,\ c=-10\sqrt{10}\\\\b^2-4ac=3^2-4(1)(-10\sqrt{10})=9+40\sqrt{10}\\\\x=\dfrac{-3\pm\sqrt{40+10\sqrt{10}}}{2(1)}=\dfrac{-3\pm\sqrt{40+10\sqrt{10}}}{2}\\\\x=\dfrac{-3-\sqrt{10+10\sqrt{10}}}{2}\notin D](https://tex.z-dn.net/?f=x%5E2%2B3x%3D10%5E%7B1%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5Cx%5E2%2B3x%3D10%5E%7B1%2B%5Cfrac%7B1%7D%7B2%7D%7D%5Cqquad%5Ctext%7Buse%7D%5C%20a%5En%5Ccdot%20a%5Em%3Da%5E%7Bn%2Bm%7D%5C%5C%5C%5Cx%5E2%2B3x%3D10%5Ccdot10%5E%5Cfrac%7B1%7D%7B2%7D%5Cqquad%5Ctext%7Buse%7D%5C%20%5Csqrt%5Bn%5D%7Ba%7D%3Da%5E%5Cfrac%7B1%7D%7Bn%7D%5C%5C%5C%5Cx%5E2%2B3x%3D10%5Csqrt%7B10%7D%5Cqquad%5Ctext%7Bsubtract%7D%5C%2010%5Csqrt%7B10%7D%5C%20%5Ctext%7Bfrom%20both%20sides%7D%5C%5C%5C%5Cx%5E2%2B3x-10%5Csqrt%7B10%7D%3D0%5C%5C%5C%5C%5Ctext%7BUse%20the%20quadratic%20formula%7D%5C%5C%5C%5Cax%5E2%2Bbx%2Bc%3D0%5C%5C%5C%5Cx%3D%5Cdfrac%7B-b%5Cpm%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%5C%5C%5C%5Ca%3D1%2C%5C%20b%3D3%2C%5C%20c%3D-10%5Csqrt%7B10%7D%5C%5C%5C%5Cb%5E2-4ac%3D3%5E2-4%281%29%28-10%5Csqrt%7B10%7D%29%3D9%2B40%5Csqrt%7B10%7D%5C%5C%5C%5Cx%3D%5Cdfrac%7B-3%5Cpm%5Csqrt%7B40%2B10%5Csqrt%7B10%7D%7D%7D%7B2%281%29%7D%3D%5Cdfrac%7B-3%5Cpm%5Csqrt%7B40%2B10%5Csqrt%7B10%7D%7D%7D%7B2%7D%5C%5C%5C%5Cx%3D%5Cdfrac%7B-3-%5Csqrt%7B10%2B10%5Csqrt%7B10%7D%7D%7D%7B2%7D%5Cnotin%20D)
Answer:
2896.34 cubi centimetres
Step-by-step explanation:
Answer:
(6 + 3/n) -8
Step-by-step explanation:
Answer: w = -3u/2 + 2
Step-by-step explanation:
-12u + 13 = 8w - 3
-12u + 13 + 3 = 8w -3 + 3
-12u + 16 = 8w
w = -3u/2 + 2
Answer:
Length = 9units
Width = 7units
Step-by-step explanation:
It is said that the length is 2units more than the width
Assume that the width is x, then the length will be 2 + x
ie
Width = x
Length = 2 + x
Area of the rectangle = 63units
Area of rectangle = l * b
l - length of the rectangle
b - width of the rectangle
A = l * b
63 = (2 + x) * x
63 = ( 2 + x) x
63 = 2x + x^2
Let's rearrange it
x^2 + 2x - 63 = 0
Let's find the factor of 63
A factor that can be multiplied to give -63 and that can be added to give +2
Let's use -7 and +9
x^2 - 7x + 9x - 63 = 0
Separate with brackets
( x^2 - 7x) + ( 9x - 63) = 0
x( x - 7) + 9(x - 7) = 0
( x + 9)(x - 7) = 0
( x + 9) = 0
( x - 7) = 0
x + 9 = 0
x = -9
x - 7 = 0
x = 7
Note: the length of a rectangle can not be negative
So therefore,
x = 7
Length = 2 + x
= 2 + 7
= 9units
Width = x
= 7units