This type of wave is a transverse<span> wave. </span>Transverse<span> waves are always characterized by particle motion being perpendicular to wave motion.</span>
Answer:
Three different kinds of muscles are -:
- <u>SKELETAL MUSCELES </u>
- <u>CARDIAC MUSCLES </u>
- <u>SMOOTH MUSCLES</u>
Explanation:
- <u>SKELETAL MUSCLES -: </u>There are long, cylindrical, and striated skeletal muscle cells. They are multi-nucleated, which means they have more than one nucleus. This is because from the fusion of embryonic myoblasts, they are created. Each nucleus controls the sarcoplasm's metabolic demands around it. There are high energy requirements for skeletal muscle cells, because they contain several mitochondria in order to generate adequate ATP. <u>Examples of skeletal muscles: arms and legs- </u>T<u>he muscles that belong to the arms and legs feature in pairs. Abdomen and Back- These muscles are connected to the various sets of skeletal muscles that run across the torso.</u>
- <u>CARDIAC MUSCLES -</u>: Cardiomyocytes have a short and narrow outline and are fairly rectangular. They are about 0.02 mm wide and 0.1 mm (millimetres) long, respectively. There are many sarcosomes in cardiomyocytes, which provide the required energy for contraction. Cardiomyocytes usually contain a single nucleus, unlike skeletal muscle cells. Cardiomyocytes, although they contain more sarcosomes, normally contain the same cell organelles as skeletal muscle cells.<u> example - cardiac muscle is present in heart. </u>
- <u>SMOOTH MUSCLES -:</u> Smooth muscle cells have a single central nucleus and are spindle-shaped. They range in length from 10 to 600 μm (micrometers), and are the tiniest type of muscle cell. In the expansion of organs like the kidneys , lungs, and vagina, they are elastic and therefore essential. As in cardiac and skeletal muscle, the myofibrils of smooth muscle cells are not aligned, meaning they are not striated, hence the term smooth. <u>example of smooth muscles -: Walls of blood vessels , Walls of stomach ,
Ureters , Intestines , In the aorta (tunica media layer), Iris of the eye. ,Prostate and Gastrointestinal Tract.</u>
Complete question:
The endplate potential (EPP) at the frog neuromuscular junction occurs because ACh simultaneously increases the conductance of the postsynaptic membrane to Na and K
Answer:
TRUE
Explanation:
The Acetylcholine neurotransmitter is released from the presynaptic cell by the process of exocytosis.
Once the molecule is in the intercellular space, it moves forward the postsynaptic membrane to join its receptor in the motor plate.
Once the joining has occurred, the receptor acquires a channel shape allowing the ion transference that will make possible the modification of the action potential. Ions traffic will consist of the pass of sodium and calcium to the interior of the cell and potassium to the exterior. Quantitatively, the interchange Na-K is the most significant.
K+ follows a concentration gradient, while Na+ follows an electrochemical gradient. The interchange results in an increase of positive charges in the interior of the muscular cell.
Whenever there is a sufficient number of Acetylcholine receptors are active, the depolarization threshold of the motor endplate is exceeded. This activates an action potential that extends to the rest of the muscle membrane.
<span>The balanced equation for ammonia (NH3) is 3H2 + N2 ď 2NH3. This equation starts from H2 + N2 ď NH3. We have 1 N and 3 H on the right side (the product side) of the equation, so we multiply each by 2 to get 2 N and 6 H. We do this so that we don’t have an odd number of H atoms. We then balance the left side (the reactant side) of the equation with the right side, N is already balanced, but we have to multiply H by 3 to get 6 H atoms (to match the right side of the equation.</span>