Given:
μ = 68 in, population mean
σ = 3 in, population standard deviation
Calculate z-scores for the following random variable and determine their probabilities from standard tables.
x = 72 in:
z = (x-μ)/σ = (72-68)/3 = 1.333
P(x) = 0.9088
x = 64 in:
z = (64 -38)/3 = -1.333
P(x) = 0.0912
x = 65 in
z = (65 - 68)/3 = -1
P(x) = 0.1587
x = 71:
z = (71-68)/3 = 1
P(x) = 0.8413
Part (a)
For x > 72 in, obtain
300 - 300*0.9088 = 27.36
Answer: 27
Part (b)
For x ≤ 64 in, obtain
300*0.0912 = 27.36
Answer: 27
Part (c)
For 65 ≤ x ≤ 71, obtain
300*(0.8413 - 0.1587) = 204.78
Answer: 204
Part (d)
For x = 68 in, obtain
z = 0
P(x) = 0.5
The number of students is
300*0.5 = 150
Answer: 150
Answer:
The final result is 1
Step-by-step explanation:
Remember the following:

And that x^0= 1
We have: 8^7 / 8^7= 8 ^ (7-7)=8^0=1
9514 1404 393
Answer:
$7.14
Step-by-step explanation:
Let p, d, q represent the numbers of pennies, dimes, and quarters in the collection, respectively.
p + d + q = 45 . . . . . . . . there are 45 coins in the collection
2p +5 = q . . . . . . . . . . . . 5 more than twice the number of pennies
p + 4 = d . . . . . . . . . . . . . 4 more than the number of pennies
Substituting the last two equations into the first gives ...
p +(p +4) +(2p +5) = 45
4p = 36 . . . . . . . . . . . . . subtract 9
p = 9 . . . . . . . . . . . divide by 4
d = 9 +4 = 13
q = 2(9) +5 = 23
The value of the collection is ...
23(0.25) +13(0.10) +9(0.01) = 5.75 +1.30 +0.09 = 7.14
The coin collection is worth $7.14.
Answer:
yes; 1.25
Step-by-step explanation:
The length to width ratios of the rectangles are ...
A: 12/8 = 1.5
B: 15/10 = 1.5
C: 30/15 = 2.0
__
Rectangles A and B have the same aspect ratio, so are similar. Rectangle B is a scaled copy of A with a scale factor of 10/8 = 1.25.
The sketch of the parabola is attached below
We have the focus

The point

The directrix, c at

The steps to find the equation of the parabola are as follows
Step 1
Find the distance between the focus and the point P using Pythagoras. We have two coordinates;

and

.
We need the vertical and horizontal distances to find the hypotenuse (the diagram is shown in the second diagram).
The distance between the focus and point P is given by

Step 2
Find the distance between the point P to the directrix

. It is a vertical distance between y and c, expressed as

Step 3
The equation of parabola is then given as

=


⇒ substituting a, b and c


⇒Rearranging and making

the subject gives