Given that a<span>
gas station operates two pumps, each of which can pump up to 10,000
gallons of gas in a month and that the total of gas pumped at the station in a
month is a random variable y (measured in 10,000 gallons) with a
probability density function (p.d.f.) given by

Part A:
The value of c that makes f(y) a pdf is obtained as follows:
![F(\infty)= \int\limits^{\infty}_{-\infty} {f(y)} \, dy=1 \\ \\ \Rightarrow \int\limits^1_0 {cy} \, dy +\int\limits^2_1 {(2-y)} \, dy=1 \\ \\ \Rightarrow \left. \frac{cy^2}{2} \right]^1_0+\left[2y- \frac{y^2}{2} \right]^2_1=1 \\ \\ \Rightarrow \frac{c}{2} +4-2-2+ \frac{1}{2} =1 \\ \\ \Rightarrow \frac{c}{2} = \frac{1}{2} \\ \\ \Rightarrow \bold{c=1}](https://tex.z-dn.net/?f=F%28%5Cinfty%29%3D%20%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7D%20%7Bf%28y%29%7D%20%5C%2C%20dy%3D1%20%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%5Cint%5Climits%5E1_0%20%7Bcy%7D%20%5C%2C%20dy%20%2B%5Cint%5Climits%5E2_1%20%7B%282-y%29%7D%20%5C%2C%20dy%3D1%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%5Cleft.%20%5Cfrac%7Bcy%5E2%7D%7B2%7D%20%5Cright%5D%5E1_0%2B%5Cleft%5B2y-%20%5Cfrac%7By%5E2%7D%7B2%7D%20%5Cright%5D%5E2_1%3D1%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%20%5Cfrac%7Bc%7D%7B2%7D%20%2B4-2-2%2B%20%5Cfrac%7B1%7D%7B2%7D%20%3D1%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%5Cfrac%7Bc%7D%7B2%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%5Cbold%7Bc%3D1%7D%20)
Part B:
We compute E(y) as follows:
![E(y)=\int\limits^{\infty}_{-\infty} {yf(y)} \, dy \\ \\ =\int\limits^1_0 {y^2} \, dy +\int\limits^2_1 {(2y-y^2)} \, dy \\ \\ =\left. \frac{y^3}{3} \right]^1_0+\left[y^2- \frac{y^3}{3} \right]^2_1 \\ \\ = \frac{1}{3} +4- \frac{8}{3} -1+ \frac{1}{3} \\ \\ =1](https://tex.z-dn.net/?f=E%28y%29%3D%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7D%20%7Byf%28y%29%7D%20%5C%2C%20dy%20%5C%5C%20%20%5C%5C%20%3D%5Cint%5Climits%5E1_0%20%7By%5E2%7D%20%5C%2C%20dy%20%2B%5Cint%5Climits%5E2_1%20%7B%282y-y%5E2%29%7D%20%5C%2C%20dy%20%5C%5C%20%20%5C%5C%20%3D%5Cleft.%20%5Cfrac%7By%5E3%7D%7B3%7D%20%5Cright%5D%5E1_0%2B%5Cleft%5By%5E2-%20%5Cfrac%7By%5E3%7D%7B3%7D%20%5Cright%5D%5E2_1%20%5C%5C%20%20%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%2B4-%20%5Cfrac%7B8%7D%7B3%7D%20-1%2B%20%5Cfrac%7B1%7D%7B3%7D%20%20%5C%5C%20%20%5C%5C%20%3D1)
Therefore, E(y) = 1.
</span>
Answer: I would say true.
explanation: Because planning on where you want to work you’ll want to see all the benefits and things you’ll be getting into.
Answer:
The first one is proportional and the second one is not. Because for the first one you can see that if you divide the number of pens by the cost you'll get the same answer for every single one. But for the second one if you divide the number of minutes by words typed you get a different answer for each one. You can also see if it's proportional or not if you draw it on the graph and it's a straight line. If it is the relationship is proportional if it isn't it's not proportional. Hope that makes sense :)
Answer:
C
Step-by-step explanation:
The shape moves to the left by 8 and up by 7.