1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dennis_Churaev [7]
2 years ago
11

You guys are Smart, Answer me this. But I need It fast-

Mathematics
1 answer:
miss Akunina [59]2 years ago
8 0

Answer:

E = 58

F = 32

G = 90

Step-by-step explanation:

3x + 31 + 5x -13 + 90 = 180

3x + 31 + 5x -13 = 90

8x = 90 - 31 + 13

8x = 72

x = 72 / 8

x = 9

E = 3(9) + 31 = 27+31 = 58

F = 5(9)-13 = 45 - 13 = 32

G = 90

You might be interested in
Determine the value of x in the figure below.<br><br> x =
Marianna [84]

Answer:

116

Step-by-step explanation:

16+16=56/2=4

5 0
2 years ago
Is 7/10 greater or less than or equal to 2/5?
seraphim [82]

Answer:

Greater than.

Step-by-step explanation:

\frac{2}{5} * 2 = \frac{4}{10}

5 0
3 years ago
Read 2 more answers
Suppose the number of children in a household has a binomial distribution with parameters n=12n=12 and p=50p=50%. Find the proba
nadya68 [22]

Answer:

a) 20.95% probability of a household having 2 or 5 children.

b) 7.29% probability of a household having 3 or fewer children.

c) 19.37% probability of a household having 8 or more children.

d) 19.37% probability of a household having fewer than 5 children.

e) 92.71% probability of a household having more than 3 children.

Step-by-step explanation:

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

In this problem, we have that:

n = 12, p = 0.5

(a) 2 or 5 children

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 5) = C_{12,5}.(0.5)^{5}.(0.5)^{7} = 0.1934

p = P(X = 2) + P(X = 5) = 0.0161 + 0.1934 = 0.2095

20.95% probability of a household having 2 or 5 children.

(b) 3 or fewer children

P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{12,0}.(0.5)^{0}.(0.5)^{12} = 0.0002

P(X = 1) = C_{12,1}.(0.5)^{1}.(0.5)^{11} = 0.0029

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 3) = C_{12,3}.(0.5)^{3}.(0.5)^{9} = 0.0537

P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0002 + 0.0029 + 0.0161 + 0.0537 = 0.0729

7.29% probability of a household having 3 or fewer children.

(c) 8 or more children

P(X \geq 8) = P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 8) = C_{12,8}.(0.5)^{8}.(0.5)^{4} = 0.1208

P(X = 9) = C_{12,9}.(0.5)^{9}.(0.5)^{3} = 0.0537

P(X = 10) = C_{12,10}.(0.5)^{10}.(0.5)^{2} = 0.0161

P(X = 11) = C_{12,11}.(0.5)^{11}.(0.5)^{1} = 0.0029

P(X = 12) = C_{12,12}.(0.5)^{12}.(0.5)^{0} = 0.0002

P(X \geq 8) = P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) = 0.1208 + 0.0537 + 0.0161 + 0.0029 + 0.0002 = 0.1937

19.37% probability of a household having 8 or more children.

(d) fewer than 5 children

P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{12,0}.(0.5)^{0}.(0.5)^{12} = 0.0002

P(X = 1) = C_{12,1}.(0.5)^{1}.(0.5)^{11} = 0.0029

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 3) = C_{12,3}.(0.5)^{3}.(0.5)^{9} = 0.0537

P(X = 4) = C_{12,4}.(0.5)^{4}.(0.5)^{8} = 0.1208

P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.0002 + 0.0029 + 0.0161 + 0.0537 + 0.1208 = 0.1937

19.37% probability of a household having fewer than 5 children.

(e) more than 3 children

Either a household has 3 or fewer children, or it has more than 3. The sum of these probabilities is 100%.

From b)

7.29% probability of a household having 3 or fewer children.

p + 7.29 = 100

p = 92.71

92.71% probability of a household having more than 3 children.

5 0
3 years ago
What is the average rate of change of the function f(x)=2(3)x from x = 2 to x = 4?
Dvinal [7]
this is kinda easy and im gonna assume that the 4 is a exponent cuz f(2)=2(3)^4 then f=81
4 0
3 years ago
Tip and Sales tax cause a restaurant bill to____.
Luda [366]
<span>Tip and Sales tax cause a restaurant bill to____.
a. increase

When estimating using money for a purchase, you should_____.
c. estimate up to the nearest dollar or half dollar

You purchase a piece of cake for $3.49. What would be a good estimation for just purchasing the cake?
b. 3.50

Your total restaurant bill for food, drinks, and tip is $37.40. What is a good estimate cost for just the food and drinks?
c. 36.00
</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • An item on sale costs 85% of the original price. The original price was $55.
    14·1 answer
  • 1/x&lt;4x<br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bx%7D%20%20%3C%204x" id="TexFormula1" title=" \frac{1}{x} &lt
    6·1 answer
  • Given a polynomial p(x) and a value p(a) = 0, determine what is true about the polynomial
    14·1 answer
  • If 40% of a number is 32, what is 25% of that number?
    14·2 answers
  • What is -4x - 7 - 3x + 4 = 25?​
    5·2 answers
  • Work out the area of the circle and leave it in cm plz
    6·2 answers
  • My question what is 75 percent of hours
    6·2 answers
  • Carl went out for breakfast.
    10·1 answer
  • Please tell me how you did it as well.
    8·2 answers
  • Find the interest accumulated from $100 dollars, with a 5% interest rate per month, for 2 months.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!