If the planes are parallel to one another then they will never intersect (assuming they are distinct planes as the question states).
Otherwise they will intersect along a single line.
Therefore the answer is NEVER - they can never intersect in a pair of lines.
Answer:
the last one
Step-by-step explanation:
Answer:
<em>If statement(1) holds true, it is correct that </em>
<em> is an integer.</em>
<em>If statement(2) holds true, it is not necessarily correct that </em>
<em> is an integer.</em>
<em></em>
Step-by-step explanation:
Given two positive integers
and
.
To check whether
is an integer:
Condition (1):
Every factor of
is also a factor of
.

Let us consider an example:

which is an integer.
Actually, in this situation
is a factor of
.
Condition 2:
Every prime factor of <em>s</em> is also a prime factor of <em>r</em>.
(But the powers of prime factors need not be equal as we are not given the conditions related to powers of prime factors.)
Let


which is not an integer.
So, the answer is:
<em>If statement(1) holds true, it is correct that </em>
<em> is an integer.</em>
<em>If statement(2) holds true, it is not necessarily correct that </em>
<em> is an integer.</em>
<em></em>
m5=75 degrees
m11=75 degrees
m16=65 degrees
To find 5, realize angles 5 and 8 equal 180, because they make up a straight line, line d.
180-105=75
To find 11, it is the same as finding 7. Just look at the similar sizes. Angle 7 is the same at angle 5, just turned around. There’s a term for this pair angles that I don’t remember now but it exists. Now, lines a and b are parallel, so their angles between lines that intersect both are the same too. This means, as angle 5 equals angle 7, angle 7 equals angle 11.
To find 16, we use a combination of the methods used in finding the previous angles.
180-115=65 degrees is angle 4
Angle 4=Angle 16
Knowing the two angles given and that lines a and b are parallel, you could find the measurements of every angle in each intersection if you wanted to.